상주시 임곡리 굴착공의 적정양수량 결정

조병욱·윤 욱*·문상호·이병대·조수영·김용철·황세호·신제현·하규철

한국지질자원연구원 지하수생태연구센터

Optimal Pumping Rate of a Water Well at Imgokri, Sangju City

Byong-Wook Cho, Uk Yun*, Sang-Ho Moon, Byeong-Dae Lee, Soo-Young Cho, YongCheol Kim, Jehyun Shin, Seho Hwang, and Kyoochul Ha

Groundwater Ecohydrology Research Center, KIGAM

Received 3 August 2017; received in revised form 13 August 2017; accepted 15 August 2017

상주시 임곡리에 굴착된 심도 100 m 지하수공(PW-2)의 적정양수량을 산정하였다. 시추코아와, 물리검층 자료에 의하면 지하 수 산출 심도는 26.1~26.5, 28.0~30.0, 33, 58, 71 m로 해석된다. 단계양수시험에 의하면 40, 55, 70, 90, 132 m³/d의 양수량으 로 70일간 양수시 수위강하량은 각각 6.48, 11.56, 18.07, 28.99, 60.26 m로 예상되었다. 117 m³/d으로 250분간 실시한 일정량양 수시험에서는 양수 경과시간 120~150분에 영향추가 불투수층 경계조건에 도달하여 급격한 수위강하가 일어나 PW-2의 한계채 수량은 90 m³/d로 산정하였으며 이때의 수위강하량은 28.82~31.27 m이다. 적정양수량은 한계채수량의 범위내의 정류상태여야 하기 때문에 PW-2의 적정양수량은 70~90 m³/d로 제시하였다. 불투수층 경계조건에서 직선의 기울기가 급해지며 지하수의 DO 와 ORP가 증가하는 것으로 보아 PW-2를 중심으로 한 기반암지하수의 발달은 제한적인 것으로 추정된다.

주요어: 적정양수량, 단계양수시험, 일정량양수시험, 수위강하, 불투수층 경계

We have determined the optimal pumping rate of the PW-2 water well (depth=100 m) at Imgokri, Sangju City. Cutting analysis and geophysical logging data reveal water-producing horizons at 26.1-26.5, 28.0-30.0, 33, 58, and 71 m. For pumping rates of 40, 55, 70, 90, and 132 m³/d over 70 days, the estimated drawdown from the PW-2 well was 6.48, 11.56, 18.07, 28.99 and 60.26 m, respectively. During a constant-rate pumping test at a rate of 117 m³/d, the cone of depression intersected an impermeable boundary after 120-150 min of pumping. Therefore, we consider the critical pumping rate for well PW-2 to be 90 m³/d. After pumping at 90 m³/d for 70 days, the calculated drawdown was 28.82-31.27 m. We suggest an optimal pumping rate for well PW-2 of 70-90 m³/d, as the optimal pumping rate should be similar to the critical pumping rate. Sharp increases in the slope of the time-drawdown relationship, dissolved oxygen concentrations, and oxidation-reduction potential during the constant-rate pumping test indicate the limited development of bedrock aquifers around PW-2.

Key words: Optimal pumping rate, Step-drawdown pumping test, Constant-rate pumping test, Drawdown, Impermeable boundary

^{*}Corresponding author: yunuk@kigam.re.kr

^{© 2017,} The Korean Society of Engineering Geology

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

서 론

어떤 지하수공의 적정양수량(적정채수량)이란 과도한 지 하수위의 강하 없이 지속적으로 양수할 수 있는 최대 양수 량이란 개념으로 현재 국내에서 이용되고 있다. Hamm (1998)은 지하수의 적정채수량을 "지하수계의 동적인 평형 상태를 유지시키면서 장기적으로 사용할 수 있는 채수량"으 로 정의하였으며 적정채수량은 지하수의 함양량을 넘지 않 는 범위에서 결정되어야 한다고 하였다. 그러나 적절한 집 수유역과 함량률 추정방법을 선택하여 연간 함양량을 산정 하는 것은 쉽지 않다(Lee, 2016). 국토교통부의 지하수 업무 지침에 의하면 적정양수량이란 "지하수 고갈, 오염물질의 유 입, 지반침하 등과 같이 지하수 장해를 일으키지 않으면서 우물에서 지하수위 강하를 가능한 범위 내에서 최대한 크게 하였을 때의 취수 가능한 지하수량"으로 정의하고 있다. 또 지하수 업무지침에는 한계채수량이란 개념도 있는데 이는 "단계양수시험을 시행할 때 양수량 증가에 따른 수위강하량 의 균형이 깨져 급격한 수위강하가 일어나는 시점"을 말한 다(MOLIT, 2015). Lee(2010)는 적정채수량과 한계채수량과 의 관계를 "적정채수량은 한계채수량 혹은 한계채수량보다 작은 양수량을 의미하는 것"으로 해석하였다. 적정양수량과 유사한 의미로는 안전산출률(safe yield), 지속가능산출량 (sustainable yield), 최적산출량(optimal yield) 등이 있는데 이들은 장기적으로 보아서 지하수계(groundwater basin) 내 에서의 지하수 자원의 고갈이나 오염물질의 지하수계 내로 의 유입이 일어나지 않는 사용량을 말한다(Domenico et al., 1968).

적정양수량의 산정 방법으로는 장기간 양수시 수위강하를 관측하여 결정하는 방법과 단계양수시험 결과를 해석하는 방법으로 대별할 수 있으나 국내외적으로 가장 많이 이용하 는 방법은 단계양수시험을 이용하는 것이다. 그러나 단계양 수시험 최초의 개발 목적과 짧은 시험 기간을 고려하면 단 계양수시험은 적정양수량을 결정하는 최종단계가 아니라 장 기양수시험을 위한 준비단계로 사료된다(Lee, 2010). 지금까 지 국내에서 지하수공의 적정채수량 결정은 "누수를 포함하 는 프락탈모델을 이용한 균열암반대수층의 적정채수량 결 정"(Hamm, 1998) 등을 제외하고는 주로 단계양수시험에 의해 얻은 여러 양수량-수위강하량 자료를 도시하여 직선의 기울기가 변하는 변곡점을 찾고 이를 적정양수량으로 잠정 결정하고 있다(Lee, 2016). 그러나 양수시험시 양수량-수위 강하량이 급격히 변하는 지점은 거의 없는 것으로 알려져 있으며 단계양수시험으로 결정된 적정채수량은 장기적인 대 수층의 산출능력을 시험하는 장기양수시험의 기준 양수량으 로서만 의미가 있다(Lee, 2016). Lee (2010) 등은 이러한 점을 고려하여 단계양수시험에 의한 양수량-수위강하량에 의한 문제점을 지적하고 적정양수량 산정에 대한 추가적인 연구가 필요하다고 제시하였다.

본 논문은 상주시 임곡리에 굴착된 100 m 지하수공의 적 정양수량 결정에 있어서 장기간 양수시 수위강하 관측이나 단계양수시험 결과를 해석하는 방법 대신에 시추 코아와 물 리검층으로 지하 대수층의 확인, 단계양수시험으로 양수량 별 장기 수위강하량 예측, 불투수층 경계 확인과 한계채수 량 결정, 장기 수위강하량 예측의 타당성 확인, 양수량별 수 온, 수질 변화 관측 등을 종합하여 연구지역 지하수공의 적 정양수량을 제시하였다.

연구지역

연구지역은 충북 보은군 마로면 임곡리 일대이며 경북 상 주시 화남면 임곡리와 접해 있다. 연구지역은 경사가 급한 산악지형으로서 해발고도는 350 m 내외이다(Fig. 1). 따라서 하천의 발달은 미약하여 지표수의 흐름은 거의 없다. 연구 지역 일대의 지질은 하부로부터 조선계 석회암층, 평안계 퇴 적암층(만항층, 밤치층), 쥬라기 만드레층, 백악기 반암류로 이루어져 있다(KIER, 1991).

연구지역은 광역상수도의 공급이 어려워서 주민들의 생활

Porphyries Mandre Formation

Pamchi Formation

Great limestone grou

Legend

Jurrasic Triassic

OBS-2

Fig. 1. Location of the wells and geological distribution of the study area (from KIER, 1991).

Well	Х	Y	Depth (m)	DTW (4/27/17) (m)
PW-2	127.52317	36.25456	100	1.05
OBS-2	127.52316	36.25454	100	1.05
IK-5	127.52298	36.25452	100	13.10

Table 1. Information for wells PW-2, OBS-2, and IK-5.

용수는 지하수에 의존하고 있다. 이 지역에는 지하수를 개 발하기 위하여 여러 지하수공이 굴착되었으나 지하수 산출 률이 낮아서 대부분이 실패하였고 현재 1개의 마을상수도 만(IK-5) 개발되어 있는데 평안계 퇴적층과 석회암층 지역 의 경계 부분에 위치해 있다(Fig. 1). 이 마을상수도의 지하 수 산출량은 마을 주민들이 사용하기에는 충분하지 않으며 또한 지하수의 라돈 함량이 US EPA의 AMCL (Alternative maximum contaminant level)인 148 Bq/L (USEPA, 1999) 를 상회하는 500 Bq/L 정도인 것으로 알려져 있다. 따라서 주민들이 생활용수로 사용할 수 있을 정도의 충분한 양이면 서도 라돈 함량이 148 Bq/L 이하인 지하수공의 개발이 시 급한 편이다. 이에 기존 마을상수도인 IK-5보다 반암류(Kp) 로부터 조금 더 멀리 떨어진 지점 즉, IK-5로부터 동쪽으로 50여 m 떨어진 지점에 심도 100 m. 직경 8"의 양수정 PW-2와 관측정 OBS-2를 굴착하였다(Fig. 1). PW-2와 OBS-2의 초기 DTW (Depth to water table)는 1.05 m이고 지하수를 사용 중인(2016년 5월 19일 사용량 36.8 m³) IK-5의 DTW는 13.10 m이다. PW-2와 OBS-2 지하수공에는 전 심도에 걸쳐서 케이싱이 설치되어 있는데 스크린 구간은 6~100 m이다. PW-2와 OBS-2와의 거리는 13 m, PW-2와 IK-5의 거리는 52.5 m이다(Table 1).

연구 방법

양수정인 PW-2가 관통한 지층의 종류와 투수성을 파악하 기 위하여 시추시 암편을 회수하였고 자연감마선, 온도, 전 기전도도 등의 공내 물리검층(Mount Sopris, 2iDA sonde) 을 실시하였다. 시추 코아와 물리검층자료의 해석에 의하면 지표에서 심도 2.7 m까지는 토사, 2.7~30.3 m (OBS-2는 37.3 m)는 풍화암으로 구성되는데 심도 26.1~26.5, 28.0~ 30.0 m 구간은 파쇄대로 해석되었다. 풍화암 하부는 투수성 이 약한 퇴적암으로 주로 사암과 석회암으로 구성되며 일부 구간에서는 셰일이 존재하는 것으로 해석되었다. PW-2와 OBS-2의 공내 온도분포는 심도 20 m의 11.8~11.9°C에서 심도 100 m의 13.3°C에 이른다. 따라서 PW-2와 OBS-2의 지하증온률은 1.75~1.88°C/km로 국내의 평균 지하증온률로 알려진 2.66°C/km (Yum and Kim, 1997)보다 낮다. 온도 검층과 양수를 병행한 물리검층 결과 풍화암 하부 구간에서 는 심도 33, 58, 71 m 지점이 지하수를 산출하는 대수층으 로 해석되었다(KIGAM, 2016).

PW-2에서의 양수시험을 위해서는 5HP의 수중펌프 (Franklin 사)를 심도 70 m 지점에 설치하였다. PW-2에서의 양수시험은 양수량별 수위강하량 추정을 위한 5단계의 단 계양수시험, 117 m³/d으로 250분, 71.1 m³/d로 1,470분간 양 수한 일정량양수시험으로 구성된다. 양수시험 중 일정양수 량 유지를 위해서는 직경 50 mm, 토출경 26 mm의 오리피 스(Orifice)를 지상의 토출구에 연결하여 제수변(Gate valve) 으로 오리피스의 압력수두가 일정하게 유지되도록 조절하였 다. 양수시험 중 양수정과 관측정의 지하수위 측정은 지하 수위 측정기(OTT, TYP 010)를 이용하여 직접 측정하였다. IK-5는 마을상수도로서 간헐적으로 양수를 하고 있기 때문 에 PW-2에서의 양수시험시 지하수위에 영향을 줄 수 있다. 그러나 PW-2와 IK-5의 거리가 52.5 m나 되고 IK-5의 24 시간 동안 양수시간이 약 7시간이며 주로 간헐적으로 양수 하며(양수률 135 m³/d, 양수시간 30~60분 정도), 양수중단 시간이 양수시간의 배 이상이기 때문에 PW-2의 지하수위에 미치는 영향은 거의 없었다.

단계양수시험과 일정량양수시험시에는 PW-2 지하수공이 관통한 지층의 주 대수층을 파악하기 위하여 양수중 배출되 는 지하수의 현장수질을 측정하였는데 수온은 SATO (SK-1260MC)를, 수소이온농도(pH)와 용존산소량(Dissolved oxygen, DO)은 Hach (HQ40d)를, 전기전도도(Electrical conductivity)와 산화-환원전위(Oxidation-reduction potential, ORP)는 WTW (pH/Cond 340i)를 이용하여 측정하였다. 지 하수의 라돈 함량은 현장에서 8 ml의 지하수를 22 ml vial 에 담고 일정 시간 흔들어서 섬광용액과 지하수가 골고루 섞이도록 한 후 시료채취 시간을 기재하였다. 라돈 함량 분 석은 한국지질자원연구원에서 QuantulusTM 1220 (Perkin-Elmer Co.)를 이용하여 48시간 내에 분석되었다.

PW-2의 단계양수시험시 양수량별 수위강하량은 다음의 식(Jacob, 1947)을 이용하였다.

 $s_w = BQ + CQ^2$

여기서 sw는 양수정의 수위강하, B는 대수층손실계수, C는 우물손실계수, Q는 양수량이다. 단계양수시험시의 양수량별 수위강하량을 바탕으로 일정량양수시험을 실시하여 불투수 층 경계조건에 도달할 때의 양수량을 계산하여 이를 한계채 수량으로 보았다. 양수량-비수위강하량 관계식에 의해 예측 한 70 m³/d로 1,440분간 양수시의 수위강하량과의 비교를 위해서 71.1 m³/d로 1,470분간 양수시험을 실시하여 양수량 별 1일, 70일간의 예상수위강하량의 타당성을 검증하였다. 아울러 PW-2에서 71.1 m³/d으로 양수시험시 13.0 m 떨어진 OBS-2에서의 수위강하를 관측하여 수리상수를 산출하였다. 양수시험중에는 수온과 현장수질을 측정하여 PW-2가 관통 한 지역의 주 대수층을 확인하였다.

결과 및 토의

단계양수시험에 의한 양수량별 수위강하량 예측

단계양수시험은 양수량을 변화시켜 양수량에 따른 수위강 하량을 평가하기 위하여 고안된 것으로 양수정의 효율, 영 향반경 등을 산정할 수 있으며 대수층의 수리상수도 결정할 수 있다(Dawson and Isotak, 1991). 단계양수시험은 적어도 3단계 이상 진행되어야 하며 양수시간은 가능하면 동일하게 유지하는 것이 중요하다(Choi et al., 2010). PW-2 지하수 공의 지하수 산출 능력과 장기양수시험시 양수량을 결정하 기 위하여 2017년 5월 17일 12시부터 300분간 단계양수시 험을 실시하였다. 단계양수시험시의 양수량은 40 m³/d부터 시작하여 55, 70, 90, 132 m³/d으로 증가시키면서 각각 60

Table 2. Results of the step-drawdown pumping test at PW-2.

		1	1 1 0								
	Q=40	m ³ /d	Q=55 m^{3}/d		Q=70	m ³ /d	Q=90	m ³ /d	Q=132 m ³ /d		
t (min)	DTW (m)	s (m)	DTW (m)	s (m)	DTW (m)	s (m)	DTW (m)	s (m)	DTW (m)	s (m)	
0	1.62										
1	2.25	0.63	5.27	3.65	7.88	6.26	12.21	10.59	18.34	16.72	
2	2.90	1.28	5.41	3.79	8.25	6.63	12.61	10.99	18.67	16.85	
3	3.40	1.78	5.53	3.91	8.50	6.88	13.08	11.46	19.44	17.62	
4	3.78	2.16	5.16	3.54	8.72	7.10	13.48	11.86	20.15	18.33	
5	3.88	2.26	5.75	4.13	8.90	7.28	13.70	12.08	20.81	18.99	
6	4.01	2.39	5.88	4.26	9.05	7.43	13.95	12.33	21.33	19.51	
7	3.92	2.30	5.95	4.33	9.28	7.66	14.09	12.47	21.90	20.08	
8	3.93	2.31	6.00	4.38	9.39	7.77	14.27	12.65	22.37	20.55	
9	3.99	2.37	6.05	4.43	9.47	7.85	14.46	12.84	22.81	20.99	
10	4.07	2.45	6.10	4.48	9.59	7.97	14.60	12.98	23.32	21.50	
12	4.17	2.55	6.21	4.59	9.79	8.17	14.92	13.30	24.23	22.41	
14	4.22	2.60	6.30	4.68	9.93	8.31	15.27	13.65	24.79	22.97	
16	4.28	2.66	6.38	4.76	10.08	8.46	15.51	13.89	25.38	23.56	
18	4.35	2.73	6.44	4.82	10.21	8.59	15.70	14.08	25.90	24.08	
20	4.43	2.81	6.50	4.88	10.31	8.69	15.87	14.25	26.45	24.63	
25	4.59	2.97	6.67	5.05	10.62	9.00	16.29	14.67	27.38	25.56	
30	4.66	3.04	6.80	5.18	10.80	9.18	16.64	15.02	28.24	26.42	
35	4.74	3.12	6.93	5.31	10.99	9.37	16.84	15.22	29.06	27.24	
40	4.86	3.24	7.05	5.43	11.17	9.55	17.06	15.44	29.81	27.99	
45	4.86	3.24	7.17	5.55	11.32	9.70	17.28	15.66	30.30	28.48	
50	4.93	3.31	7.25	5.63	11.47	9.85	17.45	15.83	30.79	28.97	
55	4.99	3.37	7.30	5.68	11.57	9.95	17.66	16.04	30.84	29.02	
60	5.05	3.43	7.39	5.77	11.65	10.03	17.78	16.16	31.46	29.64	

분간 실시하였다(Table 2). Fig. 2는 단계양수량별 시간-수위 강하량을 표시한 것으로서 양수량이 증가할수록 상대적으로

Fig. 2. Plots of step-drawdown pumping test at PW-2.

	$\Delta s_{w}(m)$	s _w (m)	$Q (m^3/d)$	s_w/Q (d/m ²)	$\Delta t (min)$
step 1	3.43	3.43	40	0.086	60
step 2	2.04	5.47	55	0.099	60
step 3	3.87	9.34	70	0.133	60
step 4	5.44	14.78	90	0.164	60
step 5	12.42	27.20	132	0.206	60

Table 3. Specific drawdown (s_w/Q) for each pumping step.

Fig. 3. Specific drawdowns determined with data set of Table 3 (B = 0.0014, C = 0.033).

Table 4. Pumping rates and calculated drawdowns after 1 and 70 days at PW-2.

Q (m ³ /d)	s (1 day) (m)	s (70 days) (m)
40	4.74	6.48
55	8.33	11.56
70	12.91	18.07
90	20.56	28.99
132	42.35	60.26

수위강하량은 더 커짐을 알 수 있다. 단계양수량별 최종 수 위강하량은 각각 3.43, 5.77, 10.03, 16.16, 29.64 m이나 수 위가 안정되지 않고 계속 하강하고 있다(Table 2). 따라서 천이상태(transient state)의 전 단계 양수 영향을 다음 단계 의 수위강하량(Δs)에서 제거하면(외삽) 수위강하량은 각각 3.43, 5.47, 9.34, 14.78. 27.20 m이고 이때의 비수위강하량 (s_w/Q)은 각각 0.086, 0.099, 0.133, 0.164, 0.206이 된다 (Table 3). PW-2의 우물효율 상수인 B와 C를 구하기 위하 여 양수량(Q)과 비수위강하량(s_w/Q)를 Fig. 3에 도시하였다. 양수량과 비수위강하량의 관계에 의한 선형회귀직선은 s_w/ Q=0.0014Q+0.033이며 결정계수(R²)는 0.98이었다.

60분간 실시된 단계양수시험시 지하수위는 안정을 이루지 못하고 계속 낮아진다. 60분과 마찬가지로 1일, 70일 양수 시 양수량별 예상 수위강하량은 Table 4와 같다. 70일 양수 후의 예상 수위강하량을 설정한 것은 연구지역 대수층으로 의 강우의 충전이 일어나지 않는 기간 즉, 최대 무 강수일

Fig. 4. Time-drawdown graph for the well PW-2 (Q = $117 \text{ m}^3/\text{d}$) showing impermeable boundary ($\Delta s_2 = 40.1 \text{ m}$).

을 약 70일로 보았기 때문이다. 만일 PW-2에서 70일 동안 연속 양수기간 중 강수량이 있으면 강수량 중 일부는 지표 에 도달하여 PW-2의 상부대수층인 풍화암대수층으로 충전 되기 때문에 수위강하량은 예상보다 줄어들 것이다. 40, 55, 70, 90, 132 m³/d으로 70일간 양수 후의 예상 수위강하량은 각각 6.48, 11.56, 18.07, 28.99, 60.26 m이다.

불투수층 경계와 한계채수량

앞에서 설명한 단계양수시험은 적정양수량을 결정하는 최 종단계가 아니라 장기양수시험을 위한 준비단계로 볼 수 있 다(Lee, 2010). 일반적으로 대수층은 수평으로 무한하며 등 방으로 가정하고 있으나(Theis, 1935) 연구지역과 같은 산악 지역이나 하천 주변, 단층대, 지질경계부 등에서는 지하수의 공급이 원활하지 않거나(불투수층 경계조건) 반대로 지하수 의 공급이 원활한 조건(공급 경계조건)이 존재할 가능성이 크다. 앞의 단계양수시험시 132 m³/d으로 70일간 양수해도 DTW가 수중펌프 설치심도인 70 m 이내임을 고려하여 2017년 5월 18일에 일정량양수시험(117 m³/d)을 실시하였다 (Table 5). 117 m³/d로 양수시 경과시간 120~150분에 영향 추가 불투수층 경계조건에 도달하여 수위강하가 크게 일어 나서 250분만에 양수시험이 중단되었다.

Fig. 4는 시간-수위강하자료를 반대수그래프에 표시한 것

		-					- · ·				
t (min)	DTW (m)	s (m)	T (°C)	DO (mg/L)	ORP (mV)	t (min)	DTW (m)	s (m)	T (°C)	DO (mg/L)	ORP (mV)
0	1.68	0				30	21.30	19.62	12.4	7.68	235
1	4.33	2.65	12.7	6.90	162	35	22.41	20.73	12.4	6.90	256
2	5.81	4.13				40	23.24	21.56	12.4	7.30	259
3	6.61	4.93	12.7	7.20	171	45	24.03	22.35	12.4	7.28	261
4	7.38	5.70				50	24.87	23.19	12.4	7.40	240
5	8.25	6.57	12.7	7.20	187	55	25.43	23.75	12.4	7.18	223
6	9.31	7.63				60	26.11	24.43	12.4	7.58	255
7	10.65	8.97				70	27.00	25.32	12.2	7.30	266
8	11.55	9.87	12.7	7.03	174	80	27.91	26.23	12.2	7.15	269
9	12.40	10.72				90	28.67	26.99	12.2	8.13	264
10	13.35	11.67	12.6	7.45	195	100	29.34	27.66	12.2	8.40	264
12	14.40	12.72				120	30.50	28.82	12.2	7.19	264
14	15.90	14.22	12.4	7.94	216	150	32.95	31.27	12.1	7.12	283
16	16.65	14.97				180	37.48	35.80	12.1	8.7	299
18	17.47	15.79	12.4	8.25	222	210	43.60	41.92	12.1	8.84	304
20	18.24	16.56	12.4	8.19	210	240	51.40	49.72	12.1	8.48	292
25	20.01	18.33	12.4	8.23	208	250	52.72	51.04			

Table 5. Drawdowns and water quality change during the constant-rate pumping test ($Q = 117 \text{ m}^3/\text{d}$) at PW-2.

으로서 크게 3개의 직선 구간으로 구분할 수 있다. 양수 초 기(경과시간 4~5분)의 직선 구간은 casing storage 효과 때 문에 양수시작 후 수위강하가 상대적으로 크게 일어나 정상 적인 시간-수위강하 직선으로부터 벗어난 것으로 해석된다 (Schafer, 1978). 양수 경과시간 4~5분부터 120~150분(수위 강하량 28.82~31.27 m) 까지는 시간-수위강하가 일직선(Δs1 = 7.1 m)을 이루는데 이 구간은 수위강하(s)가 시간(log t)에 따라서 일정하게 일어나는 구간(Jacob's non-equilibrium equation)이다. 그러나 양수 경과시간 120~150분부터는 시 간-수위강하 직선의 기울기가 급격히 급해져(Δs2=40.1 m) 계 속된 양수로 확대된 영향추(cone of depression)가 불투수층 경계(impervious boundary)에 도달하였음을 지시한다. 즉, 양수시간 120~150분까지는 영향추의 확대가 계속 일어나면 서 영향추 내의 지하수가 PW-2로 유입되나, 120~150분부 터는 영향추가 어떤 방향으로 불투수층 경계를 만나서 이 방향으로는 더 이상의 영향추가 확대되지 않아서 PW-2로의 지하수 공급이 일어나지 않기 때문으로 해석된다. 불투수층 경계에 의한 직선의 기울기가 급한 점과 연구지역의 지형으 로 볼 때 어느 한 방향의 불투수층 경계보다는 PW-2가 관 통한 대수층의 규모가 작기 때문으로 추정된다.

앞의 단계양수시험시 132 m³/d로 70일간 양수시 수위강 하량은 60.87 m로 예측되었으나 이는 60분간 양수시의 수 위강하자료만을 이용하여 70일간 양수시 불투수층 경계가 없다는 가정하의 수위강하량을 예상한 것이다. 영향추가 불 투수층 경계에 도달하여 급격한 수위강하가 시작되는 수위 강하량 28.82~31.27 m는 90 m³/d로 70일간 양수시의 예상 수위강하량인 28.99 m (Table 5)와 거의 같으므로 PW-2의 한계채수량은 약 90 m³/d로 볼 수 있다(MOLIT, 2015).

적정양수량 추정을 위한 일정량양수시험

적정양수량은 한계채수량의 범위내에 있어야 한다(JHa, 1999). PW-2의 한계채수량 90 m³/d는 무 강수일 70일간 양 수시 수위강하량을 28.82~31.27 m로 예상한 것이기 때문에 Table 4의 단계양수시험시의 예측 수위강하량을 실제 양수 시험의 수위강하량과 비교, 확인할 필요가 있다. 이를 위해 서 PW-2에서 한계채수량보다 적은 양수량 71.1 m³/d으로 1.470분간 장기양수시험을 실시하고 PW-2와 OBS-2의 수위 변화를 관측하였다(Table 6). Table 6에서 보는 바와 같이 71.1 m³/d로 1,470분 양수시 PW-2의 수위강하량은 13.01 m 이다. 이 수위강하량은 70 m³/d로 1.440분시의 선형회귀직 선(s_w/Q=0.0022Q+0.030, R²=0.99)에 의한 예상 수위강 하량 12.91 m (Table 4)와 비슷하게 나타나 1일, 70일간 양수시 예측된 양수량별 수위강하자료는 신뢰할 수 있다. PW-2의 적정양수량은 한계채수량의 범위내에 있어야만 하 며 정류상태의 지하수 유동시스템을 기준으로 결정해야 한 다. 70 m³/d로 70일간 양수시 수위강하 18.07 m (Table 4) 는 거의 정류 상태에 도달한 것으로 볼 수 있기 때문에 PW-2의 적정양수량은 7090 m³/d로 제시할 수 있다고 판단 된다.

한편 IK-5의 간헐적인 양수가 OBS-2의 지하수위에 미치 는 영향을 파악하기 위하여 PW-2에서 일정량양수시험동안 (Q=71.1 m³/d) IK-5에서의 양수시간을 관측하였다. 그 결과

t	DTW (PW-2)	S	DTW (OBS-2)	S	IK-5 (Pump. time)
(min)	(m)	(m)	(m)	(m)	(min)
0	1.82		1.365		
1	3.55	1.73	1.380	0.015	
2	4.53	2.71	1.420	0.055	
3	5.10	3.28	1.460	0.095	
4	5.45	3.63	1.510	0.145	
5	5.75	3.93	1.560	0.195	
6	5.96	4.14	1.600	0.235	
7	6.14	4.32	1.645	0.280	
8	6.26	4.44	1.680	0.315	
9	6.35	4.53	1.710	0.345	
10	6.46	4.64	1.740	0.375	
12	6.51	4.69	1.785	0.420	
14	6.80	4.98	1.830	0.465	
16	7.28	5.46	1.875	0.510	
18	7.60	5.78	1.920	0.555	
20	7.98	6.16	1.960	0.595	
25	8.77	6.95	2.060	0.695	
30	9.28	7.46	2.150	0.785	
35	9.55	7.73	2.220	0.855	
40	9.84	8.02	2.290	0.925	
45	10.30	8.48	2.360	0.995	
50	10.48	8.66	2.415	1.050	
55	10.66	8.84	2.460	1.095	
60	10.94	9.12	2.515	1.150	
70	11.34	9.52	2.590	1.225	76-88
80	11.68	9.86	2.665	1.300	
90	11.80	9.98	2.740	1.375	
100	12.27	10.45	2.815	1.450	
120	12.68	10.86	2.920	1.555	
150	12.86	11.04	3.040	1.675	
180	13.10	11.28	3.140	1.775	198-255
210	13.36	11.54	3.230	1.865	
240	13.54	11.72	3.270	1.905	
300	13.92	12.10	3.240	1.875	303-321
360	14.00	12.18	3.275	1.910	
420	14.13	12.31	3.270	1.905	
480	14.27	12.45	3.270	1.905	482-539
600	14.53	12.71	3.390	2.025	656-712
720	14.30	12.48	3.440	2.075	
840	14.56	12.74	3.435	2.070	879-931
960	14.55	12.73	3.530	2.165	1.098-1.160
1,140	14 58	12.76	3,565	2.200	1,283-1 343
1,320	14.74	12.92	3.660	2.295	
1 470	14.83	13.01	3 880	2 515	1 443-1 447
1,770	11.05	15.01	5.000	2.515	1,110-1,777/

Table 6. Drawdown at wells PW-2 and OBS-2 during a pumping test at PW-2 ($Q = 71.1 \text{ m}^3/\text{d}$).

Fig. 5. Determination of T and S from Δs and t_0 using semilog method.

IK-5에서 총 9회의 양수가 있었으며 총 양수시간은 401분 이었다. 수중펌프 가동시 양수률은 135 m³/d였고 일평균 양 수량은 36.8 m³/d이었다(Table 6). 만약 PW-2, OBS-2, IK-5가 관통한 지하 하부의 대수층이 균질, 등방성이라고 가정 하면 양수시험시 양수정으로부터 일정거리 떨어진 관측정에 서의 수위강하는 양수량에 비례하고 거리의 제곱에 비례한 다. IK-5와 OBS-2와의 거리는 52.5 m이고 PW-2와 OBS-2 와의 거리는 13 m이기 때문에 IK-5에서 평균 36.8 m³/d로 양수한 것은 PW-2에서 2.3 m³/d 양수한 효과에 해당된다. 따라서 PW-2의 실제 양수량은 PW-2의 양수량 71.1 m³/d과 IK-5 지하수공의 2.3 m³/d을 합친 73.4 m³/d로 볼 수 있다. 수리상수 산출을 위해 경과시간에 따른 수위강하량을 표시 한 것은 Fig. 5인데 OBS-2의 시간-수위강하 자료는 수위강 하량이 적어서 안정을 이루어가는 양수 후기에 IK-5에서의 양수, 양수중단에 의해 시간-수위강하 직선으로부터 벗어나 고 있음을 보인다. 시간-수위강하가 이루는 직선으로부터 수 리상수인 투수량계수(T)와 저류계수(S)를 구하면 다음과 같다.

 $T = 2.3Q / 4\pi\Delta s$

- = 2.3 \times 73.4 / 4 / 3.14 / 0.9355
- $= 14.37 \text{ m}^2/\text{d}$
- $S = 2.25Tt_0/r^2$
- = 2.25 × 14.37 × 2.88 / 13 / 13 / 1440
- $= 3.83 \times 10^{-4}$

양수시험 중 수온, 수질변화

양수중 배출되는 지하수의 수질은 양수정이 관통한 대수 층의 수질에 대한 정보를 제시해 줄 수 있기 때문에

Fig. 6. Water temperature, DO, and ORP variations for water from step-drawdown pumping test for the well PW-2.

(Gaona-Vizcayno, 1985) 양수시험시에는 지하수위뿐만 아니 라 수온, DO, ORP 등의 현장수질 변화도 측정하였다. 전 반적으로 보아 단계양수시험시 측정된 PW-2의 현장수질은 인근 IK-5의 현장수질(DO는 8.10, ORP는 251 mV)과 비슷 하다(Table 7, Fig. 6). 1단계 양수량 40 m³/d의 초기 수온 은 13.2°C이나 경과시간 10분부터 1단계의 마지막인 60분 까지는 13.3℃로 안정을 이루는데 이 수온은 양수정 PW-2 의 공저온도인 13.3℃와 같다. 양수량을 40 m³/d에서 55 m³/d로 올린 2단계 양수시험시 지하수의 수온은 경과시간 10분까지는 13.3℃를 유지하나 경과시간 20분부터는 13.1℃ 로 낮아지며 이 수온은 2단계 양수시험 종료시인 60분까지 유지된다. 양수량을 55 m³/d에서 70 m³/d로 증가시킨 3단계 양수시험시 지하수의 안정수온은 12.7°C, 양수량 90 m3/d시 의 안정수온은 12.5℃, 양수량 132 m³/d시의 안정수온은 12.1℃로서 양수량이 증가할수록 배출되는 지하수의 안정수 온은 낮아진다(Fig. 7). PW-2의 심도 20m의 수온이 11.8℃, 공저인 100 m의 수온이 13.3℃임을 고려하면 양수 량이 증가할수록 지하수의 수온이 낮아져서 배출되는 지하 수에서 지표에 가까운 상부대수층 지하수가 차지하는 비중 이 커짐을 짐작할 수 있다.

일반적으로 지하 심부로 내려갈수록 지하수의 DO는 낮 아진다(Freeze and Cherry, 1979). 단계양수시험동안 배출되 는 지하수의 DO는 양수량 40 m³/d시는 7.90 mg/L이나 양 수량 90 m³/d에는 8.40 mg/L로 높아진다. 즉 단계양수시험

	Q=40 m ³ /d		/d	Q=55 m ³ /d		Q=70 m ³ /d		Q=90 m ³ /d			Q=132 m ³ /d				
t (min)	Т (°С)	DO (mg/L)	ORP (mV)	T (°C)	DO (mg/L)	ORP (mV)	T (°C)	DO (mg/L)	ORP (mV)	Т (°С)	DO (mg/L)	ORP (mV)	Т (°С)	DO (mg/L)	ORP (mV)
1	13.2	7.96	187	13.3	7.92	209	13.0	8.34	206	12.6	8.40	205	12.5	8.68	222
5	13.2	8.20	190	13.3	7.93	208	13.0	8.60	207	12.5	8.08	206	12.5	8.48	225
10	13.3	8.10	193	13.3	7.83	206	13.0	8.52	205	12.7	8.08	208	12.4	8.19	221
20	13.3	7.51	198	13.1	8.03	199	12.7	8.21	205	12.6	8.09	207	12.2	8.07	234
30	13.3	7.30	204	13.1	7.70	202	12.7	8.25	202	12.6	8.35	211	12.2	7.88	236
40	13.3	7.50	205	13.1	8.05	211	12.8	8.09	212	12.5	8.52	214	12.1	8.01	238
50	13.3	7.90	206	13.1	8.42	214	12.8	8.30	205	12.5	8.40	217	12.1	8.20	239
60	13.3	7.90	206	13.1	8.34	206	12.7	8.54	203	12.5	8.20	217	12.1	7.87	225

Table 7. Water quality data during the step-drawdown pumping test at PW-2.

Fig. 7. Relationship between pumpinig rate and water temperature for the well PW-2.

의 마지막 단계인 양수량 132 m³/d을 제외하고는 양수량이 증가할수록 DO가 커져서 배출되는 지하수는 하부대수층보 다는 상부대수층이 차지하는 비중이 커짐을 지시한다(Fig. 6). 단계양수시험시 측정된 ORP의 변화도 양수중 수온, DO 변화와 일치된 결과를 보여준다. 즉, 양수량 40 m³/d시의 ORP는 206 mV이나 양수량 132 m³/d에는 239 mV로 높아 져 양수량이 증가할수록 하부대수층의 심부지하수보다는 보 다 산화환경인 상부대수층의 천부지하수가 차지하는 비율이 커짐을 지시하고 있다(Fig. 6).

117 m³/d으로 양수시에도 수온과 수질변화를 측정하였다 (Table 5). 양수 초기 수온은 12.7°C로 단계양수시험시의 초 기 수온 13.3°C보다 낮은데 이는 일정량양수시험 전에 실시 된 단계양수시험시 PW-2로 유입된 상부대수층 지하수의 영 향으로 보인다. 단계양수시험시의 초기 수온과는 다르게 일 정량양수시험의 수온은 안정을 이루지 못하고 계속 낮아지 다가 150분부터는 12.1℃로 안정된다. 일정량양수시험시 DO는 초기의 6.9 mg/L에서 시작하여 8.2 mg/L까지 상승하 다가 7.2 mg/L 정도로 안정을 이룬다. 그러나 영향추가 불 투수층 경계에 도달한 시간인 양수시간 150분부터는 DO가 8.7 mg/로 크게 증가한다. 양수중 ORP의 변화도 DO와 비

Fig. 8. Water temperature, DO, and ORP variations for water from constant-rate pumping test for the well PW-2.

슷한테 양수경과 1분에 162 mV부터 시작하여 양수시간이 경과할수록 높아져 264 mV까지 높아진다. 특히 양수시간 150분에는 283 mV, 180분부터는 300 mV를 기록한다(Fig. 7). 불투수층 경계조건에 도달하는 경과시간 150분부터 DO 와 ORP가 증가하는 것으로 보아 한계채수량인 90 m³/d 이 상의 양수시에는 하부대수층의 지하수 공급능력 부족으로 인하여 급격한 수위강하와 함께 주로 상부대수층의 지하수 가 PW-2로 유입됨을 지시한다.

IK-5 지하수의 라돈 함량이 높은 것으로 보고되었기 때문 에 PW-2에서의 단계양수시험의 종료시점과 일정량양수시험 (Q=117 m³/d) 종료시점에(총 6회) 라돈분석용 시료를 채취 하였다. 마찬가지로 IK-5에서도 같은 시기에 지하수 시료를 채취하여 한국지질자원연구원에서 분석되었다. 분석결과 IK-5의 라돈 함량은 244~314 Bq/L로 US EPA의 AMCL인 148 Bq/L를 넘었으나 PW-2의 라돈 함량은 109~147 Bq/L로 나타났다.

결 론

지하수의 라돈 함량이 높다고 알려진 상주시 임곡리에 굴 착된 심도 100 m인 지하수공(PW-2)의 적정양수량을 지하 대수층의 확인, 양수량별 장기 수위강하량 예측, 불투수층 경계 확인과 한계채수량 결정, 장기 수위강하량 예측의 타 당성 확인, 양수량별 수온, 수질 변화 관측 등을 종합하여 제시하였다.

PW-2의 시추시 회수된 시추 암편, 자연감마선, 온도검층 등의 물리검층 자료 해석에 의하면 지하 대수층은 26.1~ 26.5, 28.0~30.0, 33, 58, 71 m로 확인된다. 양수량과 비수 위강하량의 관계에 의하면 40, 55, 70, 90, 132 m³/d의 양 수량으로 1일, 70일 양수시 수위강하량은 각각 4.74. 8.33. 12.91, 20.56, 42.35 m와 6.48, 11.56, 18.07, 28.99, 60.26 m로 예상되었다. 117 m³/d으로 250분간 실시한 일정량양수 시험에서는 양수 경과시간 120~150분에 수위강하량이 크게 일어나는 불투수층 경계조건이 발생하여 PW-2의 한계채수 량은 90 m³/d로 산정하였다. PW-2의 한계채수량 90 m³/d는 단계양수시험시의 양수량-수위강하량 관계를 이용하여 무강 수일 70일간 양수시 수위강하량은 28.82~31.27 m로 예상한 것이기 때문에 단계양수시험시의 예측 수위강하량과 실제 양수시험시의 수위강하량과 비교, 확인할 필요가 있다. 71.1 m³/d으로 1,470분간 양수시 수위강하량 13.01 m는 70 m³/d 으로 1,440분 양수시의 예상 수위강하량 12.91 m과와 비슷 하게 나타났다. PW-2의 적정양수량은 한계채수량의 범위내 에 있어야만 하며 정류상태여야 하기 때문에 부정류상태인 90 m3/d보다는 적어야 한다. 70 m3/d로 70일간 양수시 18.07 m는 거의 정류 상태에 도달한 것으로 보아 PW-2의 적정양수량은 70~90 m³/d로 제시할 수 있다고 판단된다. PW-2에서 71.1 m³/d로 1.470분간 양수시 OBS-2에서 관측 한 시간-수위강하로부터 구한 투수량계수와 저류계수는 각 각 14.37 m²/d, 3.83 × 10⁻⁴이다. 단계양수시험시 양수량이 증가할수록 지하수의 수온은 낮아지고 DO와 ORP는 증가 하며, 일정량양수시험시 불투수층 경계조건에 도달시 지하 수의 DO와 ORP가 증가하는 것으로 보아 PW-2를 중심으 로 한 하부대수층의 발달은 제한적일 것으로 추정된다.

사 사

본 연구는 한국지질자원연구원의 2016년 '복합 인공함양 기법을 이용한 지하수 확보활용기술 개발: GP2015-0142016(2)'의 지원을 받아 수행되었습니다.

References

- Choi, H. M., Lee, J. Y., Cheon, J. Y., Jun, S. C., and Kwon, H. P., 2010, Estimation of optimal pumping rate, well efficiency and radius of influence using step-drawdown tests, Journal of Engineering Geology, 20(2), 127-136 (in Korean with English abstract).
- Dawson, K. J. and Isotok, J. D., 1991, Aquifer testing: design and analysis of pumping and slug tests, Lewis Publishers, 344p.
- Domenico P. A., 1972, Concepts and models in groundwater hydrology, McGraw-Hill, New York.
- Freeze, R. A. and Cherry, J. A., 1979, Groundwater, Prentice-Hall, Inc. Englewood Clifffs, New Jersey 07632, 604p.
- Gaona-Vizcayno, S., Gordillo, T., and Farvolden, R. N., 1985, Quality of water in an aquifer and its manifestation in pumping wells, Journal of Hydrology, 78, 165-181.
- Hamm, S. Y., Lim, J. U., Bae, D. J., Chwae, U. C., 1998, A study on the determination of optimal yield from fissured aquifers, Journal of Korean Society of Groundwater Environment, 5(1), 21-29 (in Korean with English abstract).
- Jha, M. K., Chikamori, K., Kamii, Y., Yamasaki, Y., 1999, Field investigation for sustainable groundwater utilization in the Konan Basin, Water Resources Management, 13, 443-470.
- Jacob, C. E., 1947, Drawdown test to determine effective radius of artesian wells, Transaction of the American Society of Civil Engineers, 112, 1047-1064.
- KIER, 1991, Geological survey report of the coalfields of Korea (Vol.13) : Poun coalfield (II) : Maro-Hwanam area, 89p (in Korean with English abstract).
- KIGAM, 2016, Development of composite artificial recharge technologies for groundwater conservation and utilization, KIGAM report GP2015-014-2016(2), 329p (in Korean with English abstract).
- Lee, J. Y., 2010, Problems in determining optimal discharge using step-drawdown tests, Journal of Geological Society of Korea, 46(5), 485-495 (in Korean with English abstract).
- Lee, J. Y., 2016, Step-drawdown tests is not a tool to determine the so called optimal discharge rate, Journal of Geological Society of Korea, 52(4) 443-446 (in Korean with English abstract).

MOLIT, 2015, Guidelines of groundwater investigation, 344p.

- Schafer, D. C., 1978, Casing storage can affect pumping test data, Johnson Drillers' Journal, Jan/Feb, Johnson Division, UOP Inc., St. Paul, MN.
- Theis, C. V., 1935, The relation between the lowering of piezometric surface and the rate and duration of discharge of a well using groundwater storage, Transaction of the American Society of Geophysical Union, 16, 518-524.

Yum, B. W. and Kim, H. C., 1997, Temperature log in Boreholes, Journal of Korea Society of Groundwater Environment, 4(2), 73-77 (in Korean with English abstract).

조병욱

한국지질자원연구원 지질환경연구부 대전시 유성구 과학로 92 Tel: 042-868-3083 E-mail: cbw@kigam.re.kr

윤 욱

한국지질자원연구원 지질환경연구부 대전시 유성구 과학로 92 Tel: 042-868-3118 E-mail: yunuk@kigam.re.kr

문상호

한국지질자원연구원 지질환경연구부 대전시 유성구 과학로 92 Tel: 042-868-3372 E-mail: msh@kigam.re.kr

이병대

한국지질자원연구원 지질환경연구부 대전시 유성구 과학로 92 Tel: 042-868-3088 E-mail: blee@kigam.re.kr

조수영

한국지질자원연구원 지질환경연구부 대전시 유성구 과학로 92 Tel: 042-868-3662 E-mail: sycho@kigam.re.kr

김용철

한국지질자원연구원 지질환경연구부 대전시 유성구 과학로 92 Tel: 042-868-3086 E-mail: yckim@kigam.re.kr

황세호

한국지질자원연구원 지질환경연구부 대전시 유성구 과학로 92 Tel: 042-868-3158 E-mail: hwangse@kigam.re.kr

신제현

한국지질자원연구원 지질환경연구부 대전시 유성구 과학로 92 Tel: 042-868-3132 E-mail: jehyun@kigam.re.kr

하규철

한국지질자원연구원 지질환경연구부 대전시 유성구 과학로 92 Tel: 042-868-3081 E-mail: hasife@kigam.re.kr