• Title/Summary/Keyword: Oxidant Addition

Search Result 383, Processing Time 0.042 seconds

DNA Breakage by Salvianolic acid B in the Presence of Cu (II) (구리이온(II)이 존재할 때 Salvianolic acid B에 의한 DNA 절단)

  • Lee, Pyeongjae;Moon, Cheol;Choi, Yoon Seon;Son, Hyun Kyu
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.2
    • /
    • pp.205-210
    • /
    • 2018
  • Salvianolic acid B, which is a compound in the Salvia miltiorrhiza, has diverse biological activities, In particular, the antioxidative effects were reported to be involved in the protection of hepatocytes, neurons, and various cell types. On the other hand, some phenolic compounds, such as ferulic acid, which is regarded as an antioxidant, plays a pro-oxidative role in the specific transitional metal environment, which could explain the anticancer effect. This study examined the pro-oxidative effects of salvianolic acid B in the presence of $Cu^{2+}$. Treatment with both salvianolic acid B and $Cu^{2+}$ induced the transition of supercoiled DNA to the open circular or linear form but not in the sole salvianolic acid B or $Cu^{2+}$ treatments. Salvianolic acid B reduced the $Cu^{2+}$ to $Cu^+$ using neocuproine, a $Cu^+$ specific chelator. In addition, catalase, an enzyme that breaks down the $H_2O_2$ to water and molecular oxygen, inhibited the DNA breakage. $H_2O_2$, a reactive oxygen species, has detrimental effects on biological molecules, particularly DNA. Overall, the reduction of $Cu^{2+}$ by salvianolic acid B could lead to the production of $H_2O_2$ followed by DNA breakage. These results suggest that the pro-oxidative effects could be the one of the anti-cancer mechanisms of salvianolic acid B, which remains to be explained.

Effects of Kalopanax Pictus Extracts and Their Related Origin on Gastric Lesions (해동피 및 유사생약 추출물의 위 손상에 대한 효과)

  • Hwang, In Young;Hwang, Seon A;Jeong, Choon Sik
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.4
    • /
    • pp.367-375
    • /
    • 2013
  • Kalopanax pictus has pharmacologically anti-inflammatory and analgesic effect and is known to respond to treatment of backache, knee pain and etc. In this study, we investigated the effects on gastric lesions of Kalopanax pictus both from Korea (KPK) and China (KPC) compared with their related origin, Znthoxylum ailanthoide both from Korea (ZAK) and China (ZAC), and Korean Bombax malabaricum (BMK). In preliminary screening, KPK and KPC shown effective inhibition of HCI EtOH-induced gastritis in rats. To elucidate their protective effects on gastric lesions, we assessed inhibition of H. pylori colonization, 2,2-diphenyl-1-picrylhydrazyl(DPPH) radical scavenging activities, reducing power test, and inhibition of lipid peroxidation. KPK was the most effective from antioxidant assays. KPK also shown the inhibition of indomethacin-induced gastric ulcer in rats. Gastric secretion in rats, KPK reduced the secretion of gastric juice and total acidity and raised pH. Therefore, it is possible that KPK can be developed as health functional food and natural medicine. In addition, it can contribute to the standardization with objectivity and reliability for KPK through the criteria establishment of the precise origin of medicine, the prevention of indiscriminate distribution of imitation, and the rising rate of dependence on imports of medicinal herbs, and mixing prevention of low-quality goods.

Effect of Fermented Platycodon grandiflorum Extract on Cell Proliferation and Migration in Bovine Aortic Endothelial Cells (혈관내피세포의 성장 및 세포 이동에 영향을 미치는 발효도라지추출물의 효과)

  • Choi, Woosoung;Song, Jina;Park, Mi-Hyeon;Yu, Heui Jong;Park, Heonyong
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.59-67
    • /
    • 2016
  • Platycodon grandiflorum A. De Candolle (Korean name, ‘Doraji’) is a perennial plant containing various triterpenoid saponins. The roots of this plant have traditionally been used as a food material in Korea. Here, we prepared a fermented P. grandiflorum extract (PG). Although it was previously reported that P. grandiflorum A. extract has a variety of physiological functionalities, including anti-inflammatory and anti-oxidant activities, little is known about its vascular functions. In this study, we executed a series of experiments to identify the effect of PG on endothelial cells. PG at a high concentration (100 μg/ml) was found to induce cell detachment, whereas PG at a low concentration (0.1 μg/ml) appeared to promote cell proliferation and migration in bovine aortic endothelial cells. The cell detachment induced by the high concentration was not associated with cell death, such as apoptosis, necrosis, and autophagy. In addition, we found that PG at the high concentration formed a small vesicular structure called an endothelial microparticle (EMP). The EMP was prepared by centrifugal fractionation and determined with flow cytometry and a microscope. Interestingly, PG-induced cell detachment was found to be mediated by EMP. We furthermore determined that PG at the low concentration activated Akt, a crucial cell-signaling molecule, and then controlled cell proliferation and migration. Overall, our findings suggest that PG at low doses maintains vascular stability by promoting endothelial cell proliferation, and enhances the efficacy of wound healing by cell proliferation and migration activity.

Anti-inflammatory Effects of Black Cherry Tomato (Lycopersicon esculentum M.) Juice on LPS-induced RAW 264.7 Cells (LPS로 유도된 RAW 264.7 세포에 대한 흑색 방울토마토 주스의 항염증 효과)

  • Jung, Kyung Im;Ha, Nayeon;Choi, Young Ju
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.569-576
    • /
    • 2018
  • This study was carried out to investigate the antioxidative, nitrite-scavenging, alcohol-metabolizing, and anti-inflammatory effects of black-cherry tomato juice (BCTJ) on LPS-induced RAW 264.7 cells. The total phenol content of the BCTJ was $156.83{\mu}g\;tannic-acid-equivalent/ml$. The antioxidative effects of BCTJ were measured using DPPH radical-scavenging activity and SOD-like assay. DPPH radical-scavenging activity of BCTJ was increased in a dose-dependent manner (p<0.05) and was 83.39% at 40%. SOD-like activity of BCTJ was 22.01% at 100%. The effects of BCTJ on alcohol-metabolism were determined by measuring generations of reduced nicotinamide adenine dinucleotides (NADH) by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH). ADH and ALDH activities were 198.87% and 181.89% at 40%, respectively. Nitric scavenging activities of BCTJ were 85.06%, 58.25%, and 43.68% at pH values 1.2, 3.0, and 6.0, respectively, at 50%. Anti-inflammatory effects were examined in LPS-stimulated RAW 264.7 cells. Nitric-oxide production was reduced to 83.55% by the addition of BCTJ at 10%. These results suggest that black-cherry tomato juice has great potential as a resource for natural health products.

Hydrogen Production from Photocatalytic Splitting of Water/Methanol Solution over a Mixture of P25-TiO2 and AgxO (산화은/이산화티타늄 혼합물을 광촉매로 활용한 물/메탄올 분해 수소제조)

  • Kim, Kang Min;Jeong, Kyung Mi;Park, No-Kuk;Lee, Tae Jin;Kang, Misook
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.271-277
    • /
    • 2015
  • A photocatalyst which mixed by the commercialized P25-TiO2 and a synthesized AgxO was used in an appropriate weight ratio to effectively produce hydrogen gas in this study. The AgxOs were synthesized with the conventional sol-gel method, and tetramethylammonium hydroxides were added at the synthesis process in order to stabilize the solutions, and then the solutions were heat-treated at the temperatures of -5, 25, and 50 ℃, resulted to obtain the three types of silver oxides. Physicochemical properties of the synthesized AgxOs were identified through X-ray diffraction analysis (XRD), scanning emission microscopy (SEM), ultraviolet-visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). In the photolysis results of water/methanol (weight ratio 1:1) solution, the mixture of P25-TiO2/AgxO exhibited a significantly higher hydrogen gases evolution, compared to that of pure P25-TiO2. Additionally, the addition of H2O2 as an supplement oxidant and in AgxO synthesized at 50 ℃ improved the hydrogen production efficiency. In particular, the emitted hydrogen gases reached to 13,000 μmol during 8 hours when a mixed catalyst, AgxO of 0.1 g and P25-TiO2 of 0.9 g, were used.

Ethanol Extracts of Citrus Peel Inhibits Adipogenesis through AMPK Signaling Pathway in 3T3-L1 Preadipocytes (진피 에탄올 추출물의 AMPK signaling pathway를 통한 3T3-L1 지방전구세포의 adipogenesis 억제에 관한 연구)

  • Jo, Hyun Kyun;Han, Min Ho;Hong, Su Hyun;Choi, Yung Hyun;Park, Cheol
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.285-292
    • /
    • 2015
  • Citrus peel (CP) is used as a traditional herb with diverse beneficial pharmacological activities, such as anti-inflammatory, anti-oxidant, and anti-allergic effects. However, the anti-obesity effects of citrus peel are poorly defined. The aim of this study was to evaluate ethanol extracts of citrus peel (EECP) for its adipocyte differentiation and adipogenesis in 3T3-L1 preadipocytes. The aim of this study was to evaluate an EECP for its adipocyte differentiation and adipogenesis in 3T3-L1 preadipocytes. Treatment with EECP significantly suppressed the terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by a decrease in lipid droplet number and lipid content and an accumulation of cellular triglyceride. EECP exhibited potential adipogenesis inhibition and downregulated the expression of pro-adipogenic transcription factors, such as sterol regulatory elementbinding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancerbinding proteins α (C/EBPα) and C/EBPβ, and adipocyte expressed genes, such as adipocyte fatty acid binding protein (aP2) and Leptin. In addition, EECP treatment effectively activated the AMP-activated protein kinase (AMPK) signaling pathway; however, compound C, a specific inhibitor of AMPK, significantly reduced the EECP-induced inhibition of adipogenesis. Taken together, these results indicate EECP showed strong anti-obesity effects through the AMPK signaling pathway, and further studies will be needed to identify the active compounds that confer the anti-obesity activity of EECP.

Mitochondria protection of Sparganii Rhizoma against oxidative stress in heptocytes (삼릉(三稜) 추출물의 간세포 보호 및 미토콘드리아 보호 효과)

  • Seo, Hye-Lim;Lee, Ju-Hee;Jang, Mi-Hee;Kwon, Young-Won;Cho, Il-Je;Kim, Kwang-Joong;Park, Sook-Jahr;Kim, Sang-Chan;Kim, Young-Woo;Byun, Sung-Hui
    • Herbal Formula Science
    • /
    • v.23 no.2
    • /
    • pp.189-198
    • /
    • 2015
  • Objectives : Sparganii Rhizoma is frequently used in traditional herbal medicine for treatment of blood stasis, amenorrhea and functional dyspepsia and has been reported to exhibit anti-oxidant, anti-proliferation and anti-angiogenesis peoperties. In this study, we investigated the cytoprotective effect and underlying mechanism of Sparganii Rhizoma water extract (SRE) against oxidative stress-induced mitochondrial dysfunction and apoptosis in hepatocyte. Methods : To determine the effects of SRE on oxidative stress, we induced synergistic cytotoxicity by co-treatment of arachidonic acid (AA) and iron in the HepG2 cell, a human derived hepatocyte cell line. Results : Treatment of SRE increased relative cell viability and altered the expression levels of apoptosis-related proteins such as Bcl-xL, Bcl-2 and procaspase-3. And SRE also inhibited the mitochondrial dysfunction and excessive reactive oxygen species production induced by AA+iron. In addition, SRE activated of AMP-activated protein kinase (AMPK), a potential target for cytoprotection, by increasing the phosphorylation of AMPKα at Thr-172. Morever, SRE increased phosphorylation of acetyl-CoA carboxylase, a direct downstream target of AMPK. Conclusion : These results indicated that SRE has the ability to protect against oxidative stress-induced hepatocyte damage, which may be mediated with AMPK pathway.

Removal of Diclofenac, Ibuprofen and Naproxen using Oxidation Processes (산화공정에서의 Diclofenac, Ibuprofen 및 Naproxen의 제거특성 평가)

  • Son, Hee-Jong;Yoo, Soo-Jeon;Hwang, Young-Do;Roh, Jae-Soon;Yoo, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.831-838
    • /
    • 2009
  • In order to evaluate a removal characteristic of diclofenac, ibuprofen and naproxen by oxidizing agents, $Cl_2,\;O_3$ and $O_3/H_2O_2$ are used as oxidants in this study. In case of that $Cl_2$ is used for oxidizing pharmaceuticals, ibuprofen is not removed entirely at $Cl_2$ dose range of 0.5~5.0 mg/L for 60 minutes, however, removal tendency of diclofenac and naproxen are so obviously at $Cl_2$ dose higher than 0.5 mg/L. In addition, as $Cl_2$ dose and contact time are increased, the removal rate of diclofenac and naproxen is enhanced. When $O_3$ is used as oxidizing agent, ibuprofen is not eliminated at $O_3$ dose range of 0.2~5.0 mg/L. On the contrary, 72~100% of diclofenac and 49~100% of naproxen are removed at $O_3$ dose of 0.2~5.0 mg/L. From experiments using $O_3/H_2O_2$ as an oxidant, we can find that $O_3/H_2O_2$ is much more effective than $O_3$ only for removal of diclofenac and naproxen. Moreover, the efficiency is raised according to increase of $H_2O_2$ dose, however, experiments using $O_3/H_2O_2$ show that oxidation of pharmaceuticals is less effective as $H_2O_2$ to $O_3$ ratio increased to above approximately 1.0. On reaction rate constant and half-life of diclofenac, ibuprofen and naproxen depending on $Cl_2$, $O_3$ and $O_3/H_2O_2$ dose, an oxidation of pharmaceuticals by $Cl_2$ and $O_3$ particularly has a comparatively high reaction rate constant and short half-life comparing $O_3/H_2O_2$. From above results, we can fine that diclofenac and naproxen can be easily eliminated in oxidation processes.

Antioxidant activity and anti-inflammatory effects of ethanol extract from Allium schoenoprasum (향부추 에탄올 추출물의 항산화 활성 및 항염증 효과)

  • Lim, Sang-ran;Lee, Ji-An
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.232-239
    • /
    • 2020
  • This study evaluated the antioxidant and anti-inflammatory activity of ethanol extracts using three parts of the chives plant: the bulb, the leaf, and the flower. As a result of DPPH and ABTS radical scavenging ability, the scavenging activity of the flower extract was higher than that of the bulb and leaf. In addition, as a result of FRAP analysis, antioxidant activity increased in all extracts depending on the extract concentration. The total polyphenol content was high in the following order: flower (11.29±0.37 mgGAE/g) > leaf (6.61±0.14 mgGAE/g) > bulb (5.7±0.67 mgGAE/g) extract. The cytotoxicity of the three extracts against rat macrophage RAW264.7 cells and HaCaT cells, both of which are human cutaneous keratinocyte cell lines, was minimal. NO by LPS was generated as a result of examining the anti-inflammatory activity of each extract through the NO colorimetric analysis method and ELISA. TNF-α secretion was decreased to a significant level in the flower ethanol extract. Therefore, these results indicate that there is a high possibility that the ethanol extract of chives, a natural plant resource, can be used as a cosmetic raw material.

Salt-water Processing-dependent Change in Anti-oxidative and Anti-inflammatory Effects of Cortex Eucommiae (염수초 포제법에 따른 두충의 항산화 및 항염증 활성 변화 비교연구)

  • Koh, Wonil;Lee, Jinho;Ha, In-Hyuk;Chung, Hwa-Jin;Lee, In-Hee;Lee, Jae-Woong;Kim, Eun Jee;Gang, Byeong-Gu;Jeon, Se Hwan;Cho, Yongkyu;Kim, Min-Jeong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.27 no.2
    • /
    • pp.29-38
    • /
    • 2017
  • Objectives The present study aimed to investigate the change in marker compounds, anti-oxidative and anti-inflammatory effects of salt-water processed Cortex Eucommiae. Methods To evaluate the influence of processing on anti-oxidant effect of Cortex Eucommiae, changes in total phenol, total flavonoid, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) free radical scavenging, and ferric reducing antioxidant power (FRAP) between processed and raw Cortex Eucommiae were assessed. In addition, nitrite assay was conducted to determine the influence of processing on anti-inflammatory effect of Cortex Eucommiae. Cell viability was also examined as to elucidate whether processing affects cytotoxicity of Cortex Eucommiae. Finally, high-performance liquid chromatography (HPLC) analysis was conducted to monitor changes in pinoresinol diglucoside amount of processed and raw Cortex Eucommiae. Results Salt-water processed Cortex Eucommiae showed higher total phenol and flavonoid amount, compared to raw Cortex Eucommiae. Furthermore, anti-oxidative activity of processed Cortex Eucommiae was improved as discovered in DPPH, ABTS, and FRAP assays. Anti-inflammatory effect of Cortex Eucommiae was also enhanced following salt-water processing, as evidenced in nitrite assay. HPLC analysis found that the amount of pinoresinol diglucoside, widely known as the marker compound of Cortex Eucommiae, increases through salt-water processing. All experiments were performed with non-toxic concentration of Cortex Eucommiae; processing did not affect the cytotoxicity of Cortex Eucommiae up to the currently adopted concentration. Conclusions The present results support that salt-water processing of Cortex Eucommiae is beneficial in terms of marker compound amount, anti-oxidative, and anti-inflammatory activities. Additional investigations are needed to standardize the processing method of Cortex Eucommiae.