DOI QR코드

DOI QR Code

Anti-inflammatory Effects of Black Cherry Tomato (Lycopersicon esculentum M.) Juice on LPS-induced RAW 264.7 Cells

LPS로 유도된 RAW 264.7 세포에 대한 흑색 방울토마토 주스의 항염증 효과

  • 정경임 (신라대학교 식품영양학과) ;
  • 하나연 (한국전통발효문화연구원) ;
  • 최영주 (신라대학교 식품영양학과)
  • Received : 2018.03.27
  • Accepted : 2018.04.24
  • Published : 2018.05.30

Abstract

This study was carried out to investigate the antioxidative, nitrite-scavenging, alcohol-metabolizing, and anti-inflammatory effects of black-cherry tomato juice (BCTJ) on LPS-induced RAW 264.7 cells. The total phenol content of the BCTJ was $156.83{\mu}g\;tannic-acid-equivalent/ml$. The antioxidative effects of BCTJ were measured using DPPH radical-scavenging activity and SOD-like assay. DPPH radical-scavenging activity of BCTJ was increased in a dose-dependent manner (p<0.05) and was 83.39% at 40%. SOD-like activity of BCTJ was 22.01% at 100%. The effects of BCTJ on alcohol-metabolism were determined by measuring generations of reduced nicotinamide adenine dinucleotides (NADH) by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH). ADH and ALDH activities were 198.87% and 181.89% at 40%, respectively. Nitric scavenging activities of BCTJ were 85.06%, 58.25%, and 43.68% at pH values 1.2, 3.0, and 6.0, respectively, at 50%. Anti-inflammatory effects were examined in LPS-stimulated RAW 264.7 cells. Nitric-oxide production was reduced to 83.55% by the addition of BCTJ at 10%. These results suggest that black-cherry tomato juice has great potential as a resource for natural health products.

본 연구에서는 흑색 방울토마토 주스의 항산화 활성, 아질산염 소거능, 알코올 분해능, 및 RAW 264.7 세포에서의 항염증 활성에 미치는 영향을 알아보았다. 흑색 방울토마토 주스의 총 페놀 함량은 $156.83{\mu}g\;TAE/ml$로 나타났다. 토마토주스의 항산화활성은 DPPH 라디칼 소거능과 SOD 유사활성으로 측정하였다. 토마토주스의 DPPH radical 소거능은 농도의존적으로 현저히 증가하였으며 40%의 농도에서의 83.39%로 나타났다. SOD 유사활성은 100% 농도에서의 SOD 유사활성은 22.01%로 나타났다. 흑색 방울토마토 주스의 숙취 해소능을 알아보기 위하여 체내 알코올 대사의 일차 효소인 ADH 활성 및 아세트알데히드를 분해하는 ALDH 활성을 알코올 분해와 숙취해소에 효과가 있는 것으로 알려진 hepos를 대조구로 하여 분석한 결과, ADH 활성 및 ALDH 활성 모두 농도 의존적으로 증가하였으며(p<0.05), 40% 농도에서의 ADH 활성과 ALDH 활성은 각각 198.87%와 181.89%로 높은 활성을 보였다. 아질산염 소거능 분석에서는 흑색 방울토마토 주스 50% 농도, pH 1.2, 3.0, 6.0에서 각각 85.06, 58.25, 43.68%로 pH가 낮을수록 아질산염 소거능이 증가하는 것으로 나타났다. 흑색 방울토마토 주스의 항염증 활성을 측정하기 위하여 LPS에 의해 유도된 RAW 264.7 대식세포의 NO 합성을 측정한 결과 농도 10%에서의 NO 합성은 1.28%로 LPS 처리군(7.79%)보다 83.57% 현저하게 감소하였다(p<0.05). 이상의 결과에서와 같이 흑색 방울토마토 주스는 항산화 활성과 알코올 분해능 및 항염증 효과가 높은 것으로 나타났기에 기능성 식품으로서의 가치가 높을 것으로 판단된다.

Keywords

References

  1. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 26, 1199-1200.
  2. Byun, E., Jeong, G. S., An, R. B., Li, B., Lee, D. S., Ko, E. K., Yoon, K. H. and Kim, Y. C. 2007. Hepatoprotective compound of Cassiae Semen on tacrine-induced cytotoxicity in Hep G2 cells. Kor. J. Pharmacogn. 38, 400-402.
  3. Cho, E. K., Jung, K. I. and Choi, Y. J. 2015. Anti-diabetic, alcohol metabolizing enzyme, and hepatoprotective activity of Acer tegmentosum Maxim stem extracts. J. Kor. Soc. Food Sci. Nutr. 44, 1785-1792. https://doi.org/10.3746/jkfn.2015.44.12.1785
  4. Choi, J. H., Lee, S. H., Park, Y. H., Lee, S. G., Jung, Y. T., Lee, I. S., Park, J. H. and Kim, H. J. 2013. Antioxidant and alcohol degradation activities of extracts from Acer tegmentosum Maxim. J. Kor. Soc. Food Sci. Nutr. 42, 378-383. https://doi.org/10.3746/jkfn.2013.42.3.378
  5. Choi, J. T., Joo, H. K. and Lee, S. K. 1995. The effect of Schizandrae fructus extract on alcohol fermentation and enzyme activities of Saccharomyces cerevisiae. Agri. Chem. Biotech. 38, 278-282.
  6. Choi, M. H., Kim, M. J., Jeon, Y. J. and Shin, H. J. 2014. Quality changes of fresh vegetable and fruit juice by various juicers. Kor. Soc. Biotechnol. Bioeng. J. 29, 145-154.
  7. Choi, S. H. and Ahn, J. B. 2014. Functional properties of the lycopene cultivar of cherry tomato (Lycopersicon esculentum var. cerasiforme). Kor. J. Cul. Res. 20, 115-127
  8. Choi, S. Y., Lin, S. H., Ha, T. Y., Kim, S. R., Kang, K. S. and Hwang, I. K. 2005. Evaluation of the estrogenic and antioxidant activity of some edible and medical plant. Kor. J. Food Sci. Technol. 37, 549-556.
  9. Cho, M. R., Lee, H. J., Kang, M. H. and Min, H. S. 2017. Comparison of antioxidant activity and prevention of lymphocyte DNA damage by fruit and vegetable juices marketed in Korea. J. Nutr. Health. 50, 1-9. https://doi.org/10.4163/jnh.2017.50.1.1
  10. Chung, H. J. 2012. Comparison of physicochemical properties and physiological activities of commercial fruit juices. Kor. J. Food Preserv. 9, 712-719.
  11. Dewanto, V., Wu, X., Adom, K. K. and Liu, R. H. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50, 3010-3014. https://doi.org/10.1021/jf0115589
  12. Elbadrawy, E. and Sello, A. 2016. Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arabian J. Chem. 9, 1010-1018. https://doi.org/10.1016/j.arabjc.2011.11.011
  13. Frusciante, L., Carli, P., Ercolano, M. R., Pernice, R., Di Matteo, A., Fogliano, V. and Pellegrini, N. 2007. Antioxidant nutritional quality of tomato. Mol. Nutr. Food Res. 51, 609-617. https://doi.org/10.1002/mnfr.200600158
  14. Gardner, P. T., Whit, T. A. C., Mcphai, D. B. and Duthie, G. G. 2000. The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chem. 68, 471-474. https://doi.org/10.1016/S0308-8146(99)00225-3
  15. Giovannucci, E. 1999. Tomatoes, tomato-based products, lycopene, and cancer: Review of the epidemiologic literature. J. Natl. Cancer Inst. 91, 317-331. https://doi.org/10.1093/jnci/91.4.317
  16. Gray, J. I. and Dugan, J. R. L. R. 1975. Inhibition of N-nitrosamine formation in model food system. J. Food Sci. 40, 981-984. https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  17. Heo, S. J., Park, E. J., Lee, K. W. and Jeon, Y. J. 2005. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour. Technol. 96, 1613-1623. https://doi.org/10.1016/j.biortech.2004.07.013
  18. Jeong, H. J., Sung, M. S., Kim, Y. H., Ham, H. M., Choi, Y. M. and Lee, J. S. 2012. Anti-inflammatory activity of Salvia plebeia R. Br. leaf through heme oxygenase-1 induction in LPS-stimulated RAW264.7 macrophages. J. Kor. Soc. Food Sci. Nutr. 41, 888-894. https://doi.org/10.3746/jkfn.2012.41.7.888
  19. Kee, J. Y., Kim, M. O., You, I. Y., Chai, J. Y., Hong, E. S., An, S. C., Kim, H., Park, S. M., Youn, S. J. and Chae, H. B. 2003. Effects of genetic polymorphisms of ethanol-metabolizing enzymes on alcohol drinking behaviors. Kor. J. Hepatology 9, 89-97.
  20. Kim, H. J., Lee, K. J., Ma, K. H., Cho, Y. H., Lee, S. Y., Lee, D. J. and Chung, J. W. 2015. Effect of tomato leaf extracts on anti-inflammatory and antioxidant activities. J. Int. Agric. 27, 529-535. https://doi.org/10.12719/KSIA.2015.27.4.529
  21. Kim, H. R. and Ahn, J. B. 2014. Antioxidative and anticancer activities of the betatini cultivar of cherry tomato (Lycopersicon esculentum var. cerasiforme) extract. Food Eng. Prog. 18, 359-365. https://doi.org/10.13050/foodengprog.2014.18.4.359
  22. Kim, K. B., Yoo, K. H., Park, H. Y. and Jeong, J. M. 2006. Anti-oxidative activities of commercial edible plant extracts distributed in Korea. J. Kor. Soc. Appl. Biol. Chem. 49, 328-333.
  23. Kim, K. M., Jung, H. J., Sung, H. M., Wee, J. H., Kim, T. Y. and Kim, K. M. 2014. Study of the antioxidant and alcohol-degrading enzyme activities of soybean sprout sugar solutions. Kor. J. Food Sci. Technol. 46, 581-587. https://doi.org/10.9721/KJFST.2014.46.5.581
  24. Kim, K. M., Park, M. H., Kim, K. H., Im, S. H., Park, Y. H. and Kim, Y. N. 2009. Analysis of chemical composition and in vitro anti-oxidant properties of extracts from Sea Buckthorn (Hippophae rhamnoides). J. Appl. Biol. Chem. 52, 58-64. https://doi.org/10.3839/jabc.2009.011
  25. Kim, S. M., Kang, S. H., Ma, J. Y. and Kim, J. H. 2006. A study on the extraction and efficacy of bioactive compound from Hovenia dulcis. Kor. J. Biotechnol. Bioeng. 21, 11-15.
  26. Koivula, T. and Koivusalo, M. 1975. Different from of rat liver aldehyde dehydrogenase and their subcellular distribution. Biochim. Biophys. Acta. 397, 9-23. https://doi.org/10.1016/0005-2744(75)90174-6
  27. Lee, K. S., Kim, G. H., Seong, B. J., Kim, H. H., Kim, M. Y. and Kim, M. R. 2009. Effects of aqueous medicinal herb extracts and aqueous fermented extracts on alcohol-metabolizing enzyme activities. Kor. J. Food Preserv. 16, 259-265.
  28. Lee, M. H., Kim, M. S., Shin, H. G. and Sohn, H. Y. 2011. Evaluation of antimicrobial, antioxidant, and antithrombin activity of domestic fruit and vegetable juice. Kor. J. Microbiol. Biotechnol. 39, 146-152.
  29. Lee, S. J., Chung, M. J., Shin, J. H. and Sung, N. J. 2000. Effect of natural plant components on the nitrite-scavenging. J. Fd. Hyg. Safety 15, 88-94.
  30. Marklund, S. and Marklund, G. 1975. Involvement of superoxide aminoradical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 468-474.
  31. Maxon, E. D. and Rooney, L. W. 1972. Evaluation of methods for tannin analysis in sorghum grain. Cereal Chem. 49, 719-729.
  32. Na, H. S., Kim, J. Y., Yun, S. H., Park, H. J. and Choi, G. C. 2013. Phytochemical contents of agricultural products cultivated by region. Kor. J. Food Preserv. 20, 451-458. https://doi.org/10.11002/kjfp.2013.20.4.451
  33. Oshima, S., Ojima, F., Sakamoto, H., Ishiguro, Y. and Terao, J. 1998. Supplementation with carotenoids inhibits singlet oxygen-mediated oxidation of human plasma low-density lipoprotein. J. Agr. Food Chem. 44, 2306-209.
  34. Park, H. J., Song, J. Y., Chea, K. S., Lee, H. K. and Choi, H. R. 2012. Quality characteristics and functional components of bokbunja (Black Raspberry) juice. Food Eng. Pro. 16, 52-57.
  35. Park, H. S. 2010. Physicochemical property and antioxidant activity of wild grape (Vitis coignetiea) juice. Kor. J. Culinary Res. 16, 297-304.
  36. Park, S. Y., Kim, M. J., Park J. I., Kim, J. I. and Kim, M. J. 2016. Effect of low temperature storage on proteolytic and antioxidant activities of fresh pineapple and kiwi juices extracted by slow-speed masticating household juicer. J. Kor. Soc. Food Sci. Nutr. 45, 1316-1323. https://doi.org/10.3746/jkfn.2016.45.9.1316
  37. Polazza, P., Simone, R. E., Catalano, A. and Mele, M. C. 2011. Tomato lycopene and lung cancer prevention: From experimental to human studies. Cancers 3, 2333-2357. https://doi.org/10.3390/cancers3022333
  38. Racker, E. 1955. Alcohol dehydrogenase from bakers yeast. Methods Enzymol. 1, 500-506.
  39. Singleton, V. L., Orthofer, R. and Lamuela-Raventos, R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods Enzymol. 299, 152-178.
  40. Son, C. Y., Jung, Y. J., Lee, I. H., Kyoung, J. H., Lee, J. W. and Kang, K. K. 2011. Studies on genetic variation of soluble solids, acidity and carotenoid contents in tomato fruits from germplasm. Kor. J. Plant Res. 24, 195-199. https://doi.org/10.7732/kjpr.2011.24.2.195
  41. Vallverdu-Queralt, A., Medina-Remon, A. and Andres-Lacueva, C. 2011. Changes in phenolic profile and antioxidant activity during production of diced tomatoes. Food Chem. 126, 1700-1707. https://doi.org/10.1016/j.foodchem.2010.12.061
  42. Weisz, A., Cicatiello, I. and Esumi, H. 1996. Regulation of the mouse inducible type nitric oxide synthase gene promoter by interferon-gamma, bacterial lipopolysaccharide and NG-monomethyl-L-arginine. Biochem. J. 316, 209-215. https://doi.org/10.1042/bj3160209
  43. Wootton-Beard, P., Moran, A. and Ryan, L. 2011. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABRS and Folin-Ciocalteu methods. Food Res. Int. 44, 217-224. https://doi.org/10.1016/j.foodres.2010.10.033
  44. Youn, E. H., Paik, J. K. and Kim, B. S. 2015. Utilization of Korea national health and nutrition examination survey database: Estimation of tomato consumption and the risk of metabolic syndrome. Food Eng. Prog. 18, 109-115.