• Title/Summary/Keyword: Overlapping resonance

Search Result 30, Processing Time 0.026 seconds

Multichannel Quantum Defect Theory Analysis of Overlapping Resonance Structures in Lu-Fano Plots of Rare Gas Spectra

  • Lee, Chun-Woo;Kong, Ja-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1783-1792
    • /
    • 2009
  • Although overlapping resonances have been studied extensively in conventional resonance theories, there have not been many studies on them in multichannel quantum defect theories (MQDT). In MQDT, overlapping resonances occur between the channels instead of states, which pose far greater difficulty. Their systematic treatment was obtained for cases involving degenerate closed channels by applying our previous theory, which decouples background scattering from the resonance scattering in the MQDT formulation. The use of mathematical theory on con-diagonalization and con-similarity was essential for handling the non-Hermitian symmetric complex matrix. Overlapping resonances in rare gas spectra of Ar, Kr and Xe were analyzed using this theory and the results were compared with the ones of the previous alternative parameterizations of MQDT which make the open-open part $K^{oo}$ and closed-closed part $K^{cc}$ of reactance submatrices zero. The comparison revealed that separation of background and resonance scatterings achieved in our formulation in a systematic way was not achieved in the representation of $K^{oo}\;=\;0\;and\;K^{cc}$ = 0 when overlapping resonances are present.

A Novel ZCS High Frequency Inverter in Complex Resonance Applied for Reduction of PM

  • Kubota, Sachio;Hatanaka, Yoshihiro
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.1036-1041
    • /
    • 1998
  • A novel ZCS high frequency inverter in complex resonance applied for reduction of PM is developed. This inverter is suppressed the switching stress by using complex resonance. The stable operation is realized by ZCS using overlapping commutation phenomenon. The ZCS characteristics are investigated based on numerical analysis and experimental results.

  • PDF

Effect of Open Channels on the Isolation of Overlapping Resonances in the Uniformly Perturbed Rydberg Systems Studied by Multichannel Quantum Defect Theory

  • Lee, Chun-Woo;Kim, Jeong-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1519-1526
    • /
    • 2011
  • A previous study (Lee, C. W. J. Phys. B 2010, 43, 175002) that isolated the overlapping resonances in the photoionization spectra using multichannel quantum defect theory (MQDT) in systems involving a single open channel was extended to manage many open channels when the closed channels are degenerate. The theory was applied to the dipole allowed J = 1$^{\circ}$ spectra from the ground state with excitation energies lying between the lowest ionization thresholds for rare gas atoms, Ar, Kr, and Xe, and also for group IV elements, Ge, Sn and Pb.

Multichannel Quantum-Defect Study of q reversals in Overlapping Resonances in Systems involving 1 Open and 2 Closed Channels

  • Cho, Byung-Hoon;Lee, Chun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.315-326
    • /
    • 2010
  • This study examined the overlapping resonances in the systems involving 1 open and 2 closed channels using the phase-shifted version of multichannel quantum-defect theory (MQDT). The results showed that 21 patterns for the q reversals in the autoionization spectra are possible depending on the relative arrangements of the two simple poles and roots of the quadratic equations. Complete cases could be generated easily using the q zero planes determined using only 3 asymmetric spectral line profile indices. The transition of the spectra of the coarse interloper Rydberg series from the lines into a structured continuum by being dispersed onto the entire Rydberg series was found. The overall behavior of the time delays was found to be governed by the dense Rydberg series, which is quite different from the one of the autoionization cross sections that is governed by an interloper, indicating that different dynamics prevail for them. This is in contrast to the two channel system where both quantities behave similarly. The dynamics obtained in the presence of overlapping resonances is as follows. The absorption process is instant and dominated by a transition to the interloper line. This process is followed by rapid leakage into the dense Rydberg series, which has a longer residence time before ionization than that of the interloper state. This is because the orbiting period is proportional to $\upsilon^3$ so that an excited electron has a shorter lifetime in the interloper state belonging to a lower member of the Rydberg series.

Study of the Resonance Structures of the Preionizing Spectrum of Molecular Hydrogen by Phase-shifted Multichannel Quantum Defect Theory

  • Lee, Chun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.809-817
    • /
    • 2012
  • The resonance structure of the preionization spectrum of $H_2$ in the region immediately above its ionization threshold, ($^2{\sum}_{g}^{+}$, $\nu^+=0$, $N^+=0$) converging toward its rotationally excited ($\nu^+=0$, $N^+=2$) limit, is complicated due to perturbation by the vibrationally excited levels $7_{p\pi}\;v=1$ and $57_{p\pi}\;v=2$. The spectra of interlopers are separated from the rotationally preionizing Rydberg series to allow analysis of this complex resonance structure. Although only two vibrationally excited levels perturb the rotational preionization spectrum, at least 6 interloper Rydberg series participate in the complex spectrum over most of its energy range and more interloper series participate at a narrow range around $124500cm^{-1}$ in the spectrum. To allow handling of an arbitrary number of interloper series, MATLAB$^{(R)}$'s symbolic operation is used to perform on-the-fly formulation.

Parallel-Branch Spiral Inductors with Enhanced Quality Factor and Resonance Frequency

  • Bae, Hyun-Cheol;Oh, Seung-Hyeub
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.2
    • /
    • pp.47-51
    • /
    • 2008
  • In this paper, we present a cost effective parallel-branch spiral inductor with the enhanced quality factor and the resonance frequency. This structure is designed to improve the quality factor, but different from other fully stacked spiral inductors. The parallel-branch effect is increased by overlapping the first metal below the second metal with same direction. Measurement result shows an increased quality factor of 12 % improvement. Also, we show an octagonal parallel-branch inductor which reduces the parasitic capacitances for higher frequency applications.

Role of Open Channels in Overlapping Resonances Studied by Multichannel Quantum Defect Theory in Systems Involving 2 Nondegenerate Closed and Many Open Channels

  • Lee, Chun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3201-3211
    • /
    • 2010
  • Previous work on the phase-shifted version of the multichannel quantum-defect theory (MQDT) for a system involving 2 closed and many open channels (Lee, C.-W. Bull. Korean Chem. Soc. 2010, 31, 1669) was extended to obtain the formulae of the spectral shape parameters with the structure of a pole extracted explicitly for general cases only limited by 2 non-degenerate closed channels. The theory was applied to the narrow $6p_{1/2,3/2}np$ J = 1 autoionizing Rydberg series in barium perturbed by the $6p_{3/2}nf$ states obtained by de Graaff et al.

Multichannel Quantum Defect Study of the Perturber's Effect on the Overlapping Resonances in Rydberg Series for the Systems Involving 2 Closed and Many Open Channels

  • Lee, Chun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1669-1680
    • /
    • 2010
  • The phase-shifted version of the multichannel quantum-defect theory (MQDT) was reformulated by disentangling the interloper spectrum from the perturbed dense Rydberg series for a systems involving 2 closed and more than 1 open channel. The theory was applied successfully to Martins and Zimmermann's photoionization spectra of the Rydberg series Cu I $3d^9\;4s(^1D_2)\;nd^2G_{9/2}$ perturbed by the interloper, $3d^9\;4p^2\;^4F_{9/2}$, for which Cohen's 4 channel QDT had failed. The zero surface graphic of the perturbed Fano's asymmetry parameter q of the autoionization spectrum of dense Rydberg series by the interloper was determined by only two parameters for this system. It was used as a map to trace the transformation route of the 3 channel autoionization spectra to the 4 channel spectra when the channel coupling of the closed channels with a newly added open channel was turned on progressively.

Predissociation of the $A^2∑^+$ (v'=4) States of OH:Effects of Multichannel Asymptotic Interactions

  • Lee, Seong Ul
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.497-502
    • /
    • 2000
  • Quantum mechanical analysis is presented for the photodissociation dynamics of the v'=4 levels of the $A^2Σ^+$ state of the OH molecule. We focus on the effects of the multichannel interactions between the asymptotically degenerate states in the recoupling region to see how they affect the dynamics near the predissociating resonances. Both the scalar (total cross section and branching ratios) and the vector properties (angular distributions and alignment parameters) of O($^3P_j, j=0, 1, 2) are treated. The resonances are predicted to be highly Lorentzian, and the branching ratios do not change much across them. Vector properties, however, show very delicate effects of the multichannel interactions and overlapping near the isolated and overlapping resonances. Computed resonance lifetimes agree reasonably well with experimental results.

NMR-based monitoring of the hangover curing effects of deep sea water minerals

  • Ha, Jong-Myung;Woo, Young Min;Kim, Andre
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.82-90
    • /
    • 2018
  • The term "hangover" refers to symptoms such as headache, heartburn, nausea, and dizziness caused by acetaldehyde created through alcohol decomposition in the body after alcohol intake. Many scientists have conducted research on diverse drugs, foods, and medicinal herbs aimed at eliminating hangovers. However, research on metabolism to objectively verify or measure their effects on hangover symptoms has been lacking. Accordingly, in this study, deep sea water minerals were administered orally at varying concentrations to rats that consumed alcohol, and changes in the levels of amino acids in their bodies were measured using nuclear magnetic resonance spectroscopy to gauge the minerals' effects on hangover symptoms. Thus far, biochemical research on hangover cures has been confined to basic research measuring changes in the levels of alcohol dehydrogenase and acetaldehyde dehydrogenase as well as in the concentrations of ethanol, acetaldehyde, and acetate using spectroscopes such as enzyme-linked immunosorbent assay kits or gas chromatography-mass spectrometers. In comparison, this study presents pharmacokinetic research that simultaneously tracked biomaterials including amino acids and organic acids, metabolites associated with hangover, to clarify hangover mechanisms more specifically. In addition, this study examined hangover mechanisms without an external supply of tracked materials not overlapping with alcohol metabolism-related materials, such as external amino acids and sugars.