DOI QR코드

DOI QR Code

Study of the Resonance Structures of the Preionizing Spectrum of Molecular Hydrogen by Phase-shifted Multichannel Quantum Defect Theory

  • Lee, Chun-Woo (Center for Space-Time Molecular Dynamics, Seoul National University, Department of Chemistry, Ajou University)
  • Received : 2011.09.26
  • Accepted : 2011.12.05
  • Published : 2012.03.20

Abstract

The resonance structure of the preionization spectrum of $H_2$ in the region immediately above its ionization threshold, ($^2{\sum}_{g}^{+}$, $\nu^+=0$, $N^+=0$) converging toward its rotationally excited ($\nu^+=0$, $N^+=2$) limit, is complicated due to perturbation by the vibrationally excited levels $7_{p\pi}\;v=1$ and $57_{p\pi}\;v=2$. The spectra of interlopers are separated from the rotationally preionizing Rydberg series to allow analysis of this complex resonance structure. Although only two vibrationally excited levels perturb the rotational preionization spectrum, at least 6 interloper Rydberg series participate in the complex spectrum over most of its energy range and more interloper series participate at a narrow range around $124500cm^{-1}$ in the spectrum. To allow handling of an arbitrary number of interloper series, MATLAB$^{(R)}$'s symbolic operation is used to perform on-the-fly formulation.

Keywords

References

  1. Aymar, M.; Greene, C. H.; Luc-Koenig, E. Rev. Mod. Phys. 1996, 68, 1015. https://doi.org/10.1103/RevModPhys.68.1015
  2. Giusti-Suzor, A.; Fano, U. J. Phys. B 1984, 17, 215. https://doi.org/10.1088/0022-3700/17/2/008
  3. Fano, U.; Rau, A. R. P. Atomic Collisions and Spectra; Academic: Orlando, U.S.A., 1986.
  4. Cooke, W. E.; Cromer, C. L. Phys. Rev. A 1985, 32, 2725. https://doi.org/10.1103/PhysRevA.32.2725
  5. Ueda, K. Phys. Rev. A 1987, 35, 2484. https://doi.org/10.1103/PhysRevA.35.2484
  6. Connerade, J. P. Proc. R. Soc. London, Ser. A 1978, 362, 361. https://doi.org/10.1098/rspa.1978.0138
  7. Lane, A. M. J. Phys. B 1984, 17, 2213. https://doi.org/10.1088/0022-3700/17/11/015
  8. Fano, U.; Cooper, J. W. Phys. Rev. 1965, 137, A1364. https://doi.org/10.1103/PhysRev.137.A1364
  9. Lee, C.-W.; Kim, J.; Gim, Y.; Lee, W.-J. J. Phys. B 2011, 44, 065002. https://doi.org/10.1088/0953-4075/44/6/065002
  10. Lee, C.-W. J. Phys. B 2011, 44, 195005. https://doi.org/10.1088/0953-4075/44/19/195005
  11. Kalyar, M. A.; Rafiq, M.; Baig, M. A. Phys. Rev. A 2009, 80, 052505. https://doi.org/10.1103/PhysRevA.80.052505
  12. De Graaff, R. J.; Ubachs, W.; Hogervorst, W.; Abutaleb, M. Phys. Rev. A 1990, 42, 5473. https://doi.org/10.1103/PhysRevA.42.5473
  13. Dehmer, P. M.; Chupka, W. A. J. Chem. Phys. 1976, 65, 2243. https://doi.org/10.1063/1.433383
  14. Giusti-Suzor, A.; Lefebvre-Brion, H. Phys.Rev. A 1984, 30, 3057 https://doi.org/10.1103/PhysRevA.30.3057
  15. Fano, U. Phys. Rev. A 1970, 2, 353. https://doi.org/10.1103/PhysRevA.2.353
  16. Atabek, O.; Dill, D.; Jungen, C. Phys. Rev. Lett. 1974, 33, 123. https://doi.org/10.1103/PhysRevLett.33.123
  17. Jungen, C.; Dill, D. J. Chem. Phys. 1980, 73, 3338. https://doi.org/10.1063/1.440528
  18. Greene, C. H.; Jungene, C. Adv. At. Mol. Phys. 1985, 21, 51. https://doi.org/10.1016/S0065-2199(08)60141-4
  19. Bjerre, N.; Kachru, R.; Helm, H. Phys. Rev. A 1985, 31, 1206. https://doi.org/10.1103/PhysRevA.31.1206
  20. Xu, E. Y.; Helm, H.; Kachru, R. Phys. Rev. A 1989, 39, 3979. https://doi.org/10.1103/PhysRevA.39.3979
  21. Fielding, H. H.; Softley, T. P. Phys. Rev. A 1994, 49, 969. https://doi.org/10.1103/PhysRevA.49.969
  22. Du, N. Y.; Greene, C. H. J. Chem. Phys. 1986, 85, 5430. https://doi.org/10.1063/1.451553
  23. Jungen, C.; Raoult, M. Faraday Discuss Chem. Soc. 1981, 71, 253. https://doi.org/10.1039/dc9817100253
  24. Raoult, M.; Jungen, C. J. Chem. Phys. 1981, 74, 3388. https://doi.org/10.1063/1.441492
  25. Kirrander, A.; Jungen, C.; Fielding, H. H. Phys. Chem. Chem. Phys. 2010, 12, 8948. https://doi.org/10.1039/c002517h
  26. Lecomte, J. M. J. Phys. B 1987, 20, 3645.
  27. Lee, C.-W.; Kim, J.-H. Bull. Korean Chem. Soc. 2002, 23, 1560. https://doi.org/10.5012/bkcs.2002.23.11.1560
  28. Lee, C.-W. Bull. Korean Chem. Soc. 2009, 30, 891. https://doi.org/10.5012/bkcs.2009.30.4.891
  29. Lee, C.-W. Bull. Korean Chem. Soc. 2010, 31, 3201. https://doi.org/10.5012/bkcs.2010.31.11.3201
  30. Cho, B.; Lee, C. W. Bull. Korean Chem. Soc. 2010, 31, 315. https://doi.org/10.5012/bkcs.2010.31.02.315
  31. Lee, C.-W. Bull. Korean Chem. Soc. 2010, 31, 1669. https://doi.org/10.5012/bkcs.2010.31.6.1669
  32. Zwillinger, D.; 30th ed.; C R C Press: Boca Raton, 1996.
  33. Lester, W. A., Jr. J. Comput. Phys. 1968, 3, 322. https://doi.org/10.1016/0021-9991(68)90025-9
  34. Wind, H. J. Chem. Phys. 1965, 42, 2371. https://doi.org/10.1063/1.1696302
  35. Beckel, C. L.; Hansen, B. D.; Peek, J. M. J. Chem. Phys. 1970, 53, 3681. https://doi.org/10.1063/1.1674549
  36. Fano, U. Phys. Rev. 1961, 124, 1866. https://doi.org/10.1103/PhysRev.124.1866

Cited by

  1. Study of the Resonance Structures of the Preionizing Spectrum of Molecular Hydrogen by Phase-Shifted Multichannel Quantum Defect Theory II vol.33, pp.8, 2012, https://doi.org/10.5012/bkcs.2012.33.8.2657
  2. vol.39, pp.4, 2018, https://doi.org/10.1002/bkcs.11415