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Although overlapping resonances have been studied extensively in conventional resonance theories, there have not
been many studies on them in multichannel quantum defect theories (MQDT). In MQDT, overlapping resonances
occur between the channels instead of states, which pose far greater ditficulty. Their systematic treatment was obtained
for cases mvolving degenerate closed charmels by applying our previous theory, which decouples background scattering
from the resonance scattering in the MQDT formulation. The use of mathematical theory on con-diagonalization
and con-similanity was essential for handling the non-Hermitian symimetric complex matrix. Overlapping resonances
mrare gas spectra of Ar, Kr and Xe were analyzed using this theory and the results were compared with the ones of
the previous alternative parameterizations of MQDT which make the open-open part & ““ and closed-closed part K
of reactance submatrices zero. The comparison revealed that separation of background and resonance scatterings
achieved in owr formulation in a svstematic way was not achieved in the representation of K= 0 and X“ =0 when

overlapping resonances are present.
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Introduction

Although multichannel quantum defect theory (MQDT) is
a powerful theory of resonance that can describe complex
spectra including both bound and continuum regions with
only a few pammeters,l" the resonance structures were not
identified transparently in its formulation due to the indirect
treatment of resonance. A special treatiment is needed to identify
the resonance terms. Such treatments include the phase renor-
malization considered long ago by Eissner er af " introduced by
Cooke and Cromer to obtain more effective representation and
independently by Giusti-Suzor and Fano.” Since resonance
shows up only when closed channels are present and are coupled
to open channels. the main focus was on obtaining a pure cou-
pling term between the open and closed channels. ™

In different directions, efforts to reformulate MQDT into
forms with a one-to-one correspondence to those in Fano's con-
figuration mixing theorv of resonance'’ revealed that more ela-
borate process of disentangling background and resonance
scatterings is needed to anmalyze resonance structures in the
MOQDT formulation '~ This work is part of an ongoing inves-
tigation that extends the previous theory to the cases involving
degenerate closed channels. These latter cases are interesting
in that it is the simplest system where overlapping resonances
are present and need to be handled properly. Not many MQDT
studies " of overlapping resonances are present in contrast to
the huge amounts of work in a variety of disciplines in the
conventional theory of resonance. * In the formulations of
MODT. perturbations between Rydberg series. identification of
an interloper in complex resonances, vanishing widths and sta-
bilization of some excited levels. relations between the number
of g reversals and perturbers were the phenomena studied
related to a overlapping resonance. ™"

This study refined the MQDT analysis of overlapping reso-
nances by disentangling the background scatterings from the

resonance ones using the technique developed by this group.’ 3
This theory was applied to the photo-absorption and ionization
spectra of rare gases. where ample theoretical MQDT studies
and experimental work have been carried out, ™ Ueda, Le-
comte. Giusti-Suzor and Fano and Mullins also adopted the
same alternant parameterization scheme to treat degenerate
closed channels > In particular. Ueda succeeded in find
the phase renormalization and orthogonal transformations
that make the open-open part & ° and closed-closed part K of
reactance sub-matrices zero for the systems involving dege-
nerate closed channels. However, we will show in this work
that making X and X *° null does not guarantee the separation
of background and resonance scatterings and identification of
resonance structures in the presence of overlapping resonances.
Also. our formulation provides the physical background to his
work of using complex quantum defects and removes the ambi-
guities in his approaches.

Summay of the Previous Results

Before describing the alternant parameterization scheme to
treat degenerate closed channels. let us first summarize our
. . s . .
previous formulation.”” Let the scattering matrix

S B SOO SOC (1)

SCO SCC
describe the photo-fragmentation (including dissociation and
ionization) processes in the intermediate range along the
fragmentation coordinate. The super-indices, o and ¢. used for
the S's sub-matrices denote the open and closed channels,
respectively. Note that the classification of channels as open

or closed is meaningful only at a large K. Nevertheless. it may
still be convenient to keep this classification in the interme-
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diate range. Although all the channels are needed to describe
the motion in the intermediate range. some have become closed
and no longer exist in the limit of R — . Therefore. open
channels are only needed to describe the transition probability
amplitudes in various photo-fragmentation processes. The
physical scattering matrix, S, which gives the probability
amplimdes. is obtained as follows:

S — Soo _ Son: (Scn: _ e:i,“/’ )— l Sw. (2)

where £ is a quantum defect parameter used for the base pair of
closed channels as T (m,/mx) " exp(z i8) (D, £ iD," £)12.
where £~ denotes exp(+ ik; R). It is given by #(-/ + v) for the
Coulomb fields.” The remaining definitions of the parameters
in the closed channel base pairs can be found in Ref. [2].

For the background scattering process, an ‘effective’ scattering
sub-matrix o was introduced to supersede S, which is
defined in terms of the reactance sub-matrix, £™. as (1 -iK™)
(1+iK)” and simultaneously diagonalizable with & ."* (Note
that S is taken as a complex conjugate of the usual definition
for convenience in studyving autoionization.) In terms of this
effective scattering matrix. the physical scattering matrix can
be expressed as follows:

S = =2i(1+1K*)Y 'K (tan B+ &) K2 (1+iK™)Y" (3)
where & is defined as =i(1 = ™)1 + 5%y and is used ex-
tensively by Lecomte.” Since o™ and X' c.m be dlagonallzable
simultaneously. they can be expressed as o™ = Ue =T and
K® = U tan 8°UT. By substituting these into Eq. (3). the
following is obtained

§ =1 [1 +2if (tan A+is )_l £T }e'“o{;’T
4

= [’_.'e—m'o Sre—m'n L;T .

where £ denotes cos °07 K * and the part inside the bracket is
denoted as S

Consider extracting the resonance structures contained in
Eq. (4). The resonance structures in the physical scattering
matrix can best be seen in the behavior of its eigenphase shifts
&;because they undergo rapid changes in the neighborhood of
a resonance. The avoided interactions between the different
eigenphase shifts J; also affect their behaviors. obscuring the
resonance strctures. but can be removed easily by considering
the eigenphase sum. The eigenphase sum &< (= Z,5,) can be
obtained by calculating the determinant of the physical
scattering matrix: det(S) = exp(-2id:). From

det(tan B+x% *)

det(8) = det{*° ) ———=
det(tan/} + x“)

oo. 1AN F +tanA® *
=det(c )ﬁ—c 3
tan 3+ tanA® °
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Jds = &< + &, is obtained. The last equality in Eq. (5) is valid
only for the cases involving | closed channel. X is the
complex phase shift considered by Dubau and Seaton™ and is
defined as &° - i;°. The unitary factorization performed in Eq.
(5) still falls short of decoupling the background scattering
from the resonance one. In order to remove the background
contribution from &, completely. phase renormalization &, = &,
—my-in the resonance eigenchannel needs to be performed for
.. The extent of renormalization is determined by the coupling
strength Z~ between the open and closed channels in the “tilde™
representation which is devoid of elastic potential scattering
and is given by tan 7, = -& " tan &°. For more detailed infor-
mation. please refer to Ref [15]. In the tilde representation,
where the complete disentanglement of background scattering
from resonance scattering is attained. the relation

tan(d, — [lanﬂJr‘R(x )1 (k") = -2 (6)
can be simplified to
tand, tan f = J(R*) = —Z° (N

and the coupling parameters < and & between the open and
closed channels in respective original and tilde representations
are related by the simple equation. £ cos 7° = £ Cos .
The parameters described thus far were extracted from the
Lu-Fano plots for the excited levels of two Rydberg series of
Ne[J=1. 2p (.P3")l?$ and 2p° CP, sl and Kr[J=0, 4p°( Pv)nd
and 4p ( P1 ~)ns')® obtained from the NIST Atomic Spectra
Database™ and are summarized in Tables | and 2 and shown

Table 1. Dynamic parameters extracted from the Lu-Fano plot for
the neon Ry dberg series withJ = 1 (2p° "Pssns and 2p° "Prans')

5 3
0.93 0.0073 0.93

& He My
0.30 -0.0032 029
R(x) F(x)
1.40 -0.021 0.021
RE™) RIS &

0 -0.0073 0.0073

Table 2. Dynamue parameters extracted from the Lu—Fdno plot the
two interaction Rydberg series of Kr with /=0 (4p Py And and dp°
P2 ns')

(Sc _,_c (S:B
1.301 0.0185 1.33

ut He Hs
0.41 -0.0212 0.4639
R(x) F(x) ¢
3.60 -0.26 026
RE) 3@ &

0 -0.018 0018
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Figure 1. Lu-l-"a‘no plot for the neon Rydberg series with./ = 1 (2p”

“Pyaans and 2p” "Prans’).
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Figure 2. Lu-Fano plot for the two mteraction Rydberg series of Kr
withJ = (0 (4p° "Prand and 4p° "Prans').

graphically in Figs. 1 and 2. Note that inboth cases. the values
of &~ are much smaller than those of =~. which means caution
should be taken not to use $ - to represent the coupling strength
between the open and closed channels. A cursory look at the
Lu-Fano plot imimediately shows weak coupling betwween the two
channels and confirms the correctness of the small value of &~

Ovedapping Resonances for the System Involving Dege-
nerate Closed Channels, Consider the case where closed cha-
nnels are degenerate. as in the photo-absorption spectra of the
noble gases. Ar to Xe. which were used as a testing ground
for analyzing the multichannel phenomena. "> Since noble
gases have a p6 'S ground state. photo-absorption excites their
atoms to J = L. which are odd parity channels with a p° “P°
core. The ionization channels have /, = 0 or 2 and j, = 1/2. 3/2.
3/2. The three values of j; combined with the J; = 1/2 and 3/2
for the core vield 5 channels with J = 1. where 3 channels
have £; = Fa~ and 2 have £; = F-.

Before describing the general approach. let us start from the
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Figure 3. Lu-Fano plot for the J = 1 states of argon at the lowest
ionization thresholds “Pa:and “Pila.

straightforward formulation. where the background and reso-
nance scatterings remain intertwined but separate the two
terms contributing to a resonance so that the resonance struc-
tures can be identified. It starts from obtaining the phase J; of
det(tan £ + &) by calculating tan &, from the ratio of its real
and imaginary parts. The real part can be obtained as a qua-
dratic polynomual of tan £ and the imaginary one as a linear
poly¥nomial of tan . If #1 and »: are two roots of the real part,
tan &; can be expressed as follows:

5 A
. . ®)
tan f+1  tanfF+r

tand, =

Twvo roots are obtained as 1/2 { trR(x™) D } where D de-
notes [trR(x)]" — +det R(x**) + +det H(x*°). Similarly. the
expressions for s and s> can be obtained in a straightforward
manner and are obtained as follows:

Sa

(5) 1 [ ARE)SK™)+VD tr3(x™)
] . ﬁ[-m(aﬂ")asm“) +D tr3(x*)
+ RS ) I(KS)
- RV IHwT )] :

where AR(+™) and AZ(x*) denote the real and imaginary parts
of the difference. &1 - k7%, of the diagonal elements of x*.
respectively. If a single closed channel is involved. only one
term will appear on the right hand side of Eq. (8). Therefore.
each term on the right-hand side of Eq. (8) might be inter-
preted as tan 8q and tan ;- as done in Ref. [11]. Fig. 4 shows
. 8- and &, obtained in this manner from the Lu-Fano plot of
Arin Fig. 3. A detailed discussion of the graphs will be given
later but there was a problem with the interpretation described
thus far in that not only is &, different from &, + & but there
is also no way that tan & can be equal to tan 4, +1an Je.
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Figure 4. Decomposition of the sum of the eigenquantum-detects
extracted from the Lu-Fano plot for the J = | states of argon at the
lowest ionization thresholds “P+2 and “Py.

This problem can be avoided if svmmetric £ can be dia-
gonalized by a similarity transformation, ! w177, with a real
orthogonal matrix 7" Unfortunately. this cannot be achieved
in general because £ is not a normal matrix™ but a complex
symmetrical one. Nevertheless. it can be diagonalized as | x*T7
with a complex unitary matrix }° Such a diagonalization is
known as Takagi’s factorization or more formally condiago-
nalization ™ It begins from the diagonalization I T17 of & x**,
where Z is a diagonal matrix, whose elements o, (7= 1. 2,.. D
are nonnegative. The product of &*77* is obtained as | =D~
where [ is a diagonal matrix whose /-th element is given by
exp(i#,) with &, real. ;D7 is called a coneigenvalue with the
coneigenvector v, which comprises I'as [v;---v,]. Unlike eigen-
values, they are not defined uniquely because e“o,7is also a
coneigenvalue for all real a,.

Using this theory of consimilarity and condiagonalization.
x* is Takagi-factorized into T'ED71™". It can be given into a
factorized form as LTUT with L7 = I'D. Using the complex
phase shifts A defined as &5 — i;. the diagonal matrix ZD" may
be denoted as tan Awhereby x* can be expressed as follows:

&% =I"tan A" (10)

Note that tan £ + tan A°cannot be obtained from tan § + &
through a unitary transformation and is not a conjugate of it
because ! T} differs from unity. A conjugation relation is ob-
tained when 1" is a real orthogonal matrix, which in turn re-
quires & to be a normal matrix. If this holds. tan £+ & would
be a conjugate to tan 8+ tan A"as tan £ is a constant matrix for
the case involving degenerate close channels and equal to
}{tan #+ tan A9 whereby det(tan £ + ) would become
T1;-i(tan § + tan \}). In this case. the phase &, of det(tan 8 +
x**y could be obtained as a simple sum of terms J ' from each
eigenchannel satisfving

tanf.i,'i,“” = J(tan Aj)/[tan,@#)‘i(tm;ﬁj)] (L)
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without any coupling terms, which means that the resonances
in each eigenchannel are isolated.

However. x* is generally not a normal matrix and &' is no
longer obtained as a sum of 5,}?“ but contains a coupling term.
The resonances in different channels are no longer independent
of each other and are overlapped. Since I-71"is unity when &
is a normal matrix so that the resonances are isolated. the
overlapping resonance can be dealt by a deviation of 717
from unity. If the deviation I "1~ 7 is denoted as A7, det(tan £+
k) can be expanded in terms of it using Cayley’s theorem™
for the system of degenerate closed chamnels as follows:

del(mnﬂ+ I tan AT ) = det(tanﬂ +1 T tan A° )
=H (tan A +tan AS) (12)
+> (tan A +tanAY)cof, (Al tan A%) +---

where the matrix identity det(/ - {'T) = det( - F'T’) and the
constancy of tan B for the degenerate closed channels were
used for the first equality. Note that tan £ + I tan A° is
different from ! (tan £+ &) If closed channels were not
degenerate. the above procedure could not be applied. In that
case, diagonalization of tan # + & instead of x™ could be done
1o systematically obtain an overlapping resonance term and
terms beyvond it. The latter case will not be treated in this paper.
The first term on the right-hand side of Eq. (12) is the form of
a product of terms corresponding to isolated resonances des-
cribed by Eq. (11). The remaining terms on the right-hand side
of Eq. (12) describe the effect bevond the isolated resonances
and correspond to overlapping ones. Therefore, Takagi’s fac-
torization provides a means of describing an overlapping reso-
nance in the context of MQDT.

For this use of the factorization, the uniqueness problem of the
factorization should be cleared up first. For example. factoriza-
tion can be performed in either of two ways. UL or FEDTT,
Consider "7 and 171" Note that [det(! "1 )| = [det(L" 1)) = 1
asboth £ and I”are unitary. But. their traces are different from
the number of closed channels. tr{*°). To make the problem
easy. let us consider a system of two closed channels. for which
tr(/°) = 2. Inthis case. any unitary matrix can be expressed as
exp [i{a + bo-¢)] with Pauli matrices & If we take I"as exp
(b6 -¢) with exp (ia) taken away with a suitable choice of D.
1T takes especially a simple form, that is, its off-diagonal
elements are purely imaginary and its two diagonal elements
are complex conjugate with each other so that its trace is real.
The latter property makes the trace tr(} "I') [= tr(J. 7)) a nice
candidate for a parameter showing the extent of overlapping
of resonances. We will use this quantity in the next section as
a barometer to show the extent of overlapping of resonances.
Note that matrix relations are not invariant under con-similarity
transformation. For example. the matrix relation &% = —i{1 -
S (1 +5°)" does not hold between the con-diagonalized x*
and S, Although it may be considered peculiar at first. actually
it might be more physically reasonable. We want to investigate
this point further in the future.

Let us consider the decoupling of background and resonance
terms in the con-diagonalized tan A°of &, Using the general
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relation obtained by Lecomte.” the transformed form x"** of
tan A"under the phase renormalization 7z’ is obtained as &' =
(tan A°sin mx° + cos 79 (tan A cos mx* — sin zx*). Note that
x'* is diagonal and thus can be represented as tan A A} is
phase renormalized as A, = A°,— 74, under the phase renor-
malizations of ' = f;+ x5, If the phase renormalization is
taken as 715 = &85 ( = 1.2...). tan \° becomes a pure
imaginary tan(-iy}) = -1 tanh 5}, vielding R(x"*) = 0. The
representation obtained by this phase renormalization is the
tilde representation defined in the previous section. In this
representation. ; that sums to o, (= I;5,) satisfies the
simplest form of tan &, = ~tanh 7/ tan(#,) on the sacrifice of
the degeneracy in £ which is lifted as £, = £+ mu’. This also
means that the resonance positions in the degenerate closed
channels are different by -7 Note that both resonance
positions tend to the same ionization limit even though their
relative positional relation remains unaltered throughout the
series. Coupling parameters between closed eigen-channels of
anormal x° with their corresponding “a” states” i the open
channels can be extracted using the procedure described in Ref.
[13]. In the next section, the twwo resonance structures identified
in rare gas spectra in this analysis will be shown to correspond
to the s and o series. Channel couplings = [= =J(x°%)] between
closed and open channels are also different for degenerate
closed channels. They take the simplest form tan iy =-i
tanh(y}) or =i -jf in the tilde representation. The results de-
scribed thus far canbe summarized diagrammatically as follows:

N e L pRepT JST)=0
K tan A° =F w7 R(E“)y=0
A =85t . A‘=—|7L

(X =987 —iy7) e J ;
O'oo condiagonabzalion (7‘” u= G—-f_\r_\ - O'N
3 o o 3 aub
(}r ();m = SJ‘O;’] Oy‘ = 01}' - ﬂ/lr’i
B B A =+

(13)

Comparison with Other's Appmaches. Let us compare the
present representation with the one where both reactance
matrices K °° and X * are null. which are the approaches con-
sidered as the final goal in the alternative parameterization of
MOQDT. " In the latter representation. couplings between open
and open channels or between closed and closed channels are
zero. In the systems involving only one closed channel. it was
shown that making both £ and K * null is equivalent to the
separation of background and resonance scatterings. " Ifa
system involves more than one closed channel so that an over-
lapping between resonances cannot be ignored. the equivalence
may not be guaranteed. In fact. as we will see below. they are di-
fferent. Making both X and K* null was achieved by Ueda.*"
The procedure of making £ and X null in the context of the
present formation starts from finding the orthogonal transfor-
mation 7" and phase renormalization #° that make the trans-
formed R(x"*) zero. Or equally. we could start from finding
the orthogonal transformation ¥ and phase renormalization
4 that make the transformed R(x ") zero. which are possible
as two operations commute with each other. In the present
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systems, the former choice is better as the number of closed
channels is two so that the orthogonal transformation can be
parameterized with just one angle parameter. Once ¢ is ob-
tamed, X' can be made zero while keeping the values of #°
unaltered by ¢ and 1™ obtained from the well known diagonali-
zation procedure.” Although 4 and H ™ are remained invariant
under this procedure. X' is not and destined to zero as des-
cribed in Ref. [9.13]. Notice two important changes taking
place under this procedure. One is that non-normal x*°changed
to a normal x*° which is possible by the peculiar but still phy-
sically acceptable properties of phase renormalization and the
other is that the degeneracy in £ is lifted to £ = A, + 71 by the
phase renormalization agam. Although &' is now a normal
matrix and thus can be diagonalized with an orthogonal matrix.
overlapping resonances are not isolated since £ is no more
degenerate and thus not a constant matrix.

Let us examine the resonance behavior in the eigenphase
sum obtained from Eq. (5) in the representation where XK' =
0 and K= 0 or. equivalently. R(x'*) = 0 hold. In this case.
tan &'.can be calculated as before as described in Appendix A
and 1s obtained as

R (A S, s,
tand' =—+— + 2 14)
d, d.\tanf+r taf+r)

The defimtions of parameters »y, r-, s, -, d- and n- are
given in Appendix A. Their values for Ar. Kr and Xe are
shown in Tables 3. 4 and 5 and are close to the values in other
representations.

Resonance structures in Eq. (14) are most complicated among
3 representations and individual resonance contribution is not
clearly discernible. indicating that they are not disentangled
vet. Thus making K™ and K *° null is not sufficient to guarantee
the separation of background and resonance scatterings and
identification of resonance structures in the presence of
overlapping resonances. It might be considered strange since
making A zero seems to be sufficient to disentangle the over-
lapping resonances. This derives from the disappearance of the
degeneracy in 5 after a phase renormalization. Couplings disen-
tangled m the short-range 4 move to the long-range part to
lift the degeneracy in £ and further to entangle the dynamics

Table 3. Extraction of the dynamic parameters for the /= 1 states of
argon at the lowest ionization “Ps- and P thresholds

Original Con-diagonalized K®=0and K*=0

representation representation representation
¥ # R(xFY ] M(x chm"d]) 7 #a

062 046 0.61 0.47 0.63 0.46
5 RAl 3( K'ﬁC(d) 1= - 13 S(x W (dJ) = -9:22 51 RAl

-0.23 -0.026 -0.25 -0.0077 -0.24  -0019

Hz da

0.12 1.00

=018, 5= 014, 53 =074, 2,,= 0037, p,,= -0.00094

=018, {7=0.0063.tr(J 1) = 1.99997
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Table 4. Extraction of the dvnamic parameters for the J =1 states of
krypton at the lowest ionization “P+s and *P i, thresholds

Original Con-diagonalized K™=0and K*=0
representation representation representation
r r R(xT R(xEy 7 r
071 034 0.71 0.34 0.73 0.34
S 52 3 chf(d' )= -512

-0.20 -0.020 -0.21

- s
0.10 1.00

ai=020, 45 =0.11, 5= 0.72, = -0.033, st = -0.0015

=0.14, £2= 0014, (71 = 1.996

5

$

Table 5. Extraction of the dynamic parameters for the J = 1 states of
xenon at the lowest ionization “Pi> and “Py thresholds

Original Con-diagonalized K*™=0ad K*=0
representation representation representation
" . ‘J{(k chdl ‘J{(K cu(d)) " "
1.00 0.074 (.99 0.077 1.14 0.075
5 82 J(x LErd') =80 X Knrd)) = -Q: 81 $2
-0.52 -0.0069 -0.52 -0.0052 -0.57 -0.006
12 >
0.28 1.00

=027, 13 = 0.024, 15 = -0.14, g, = -0.087, .= -0.00012
F3=025, EF=00051, tr 1T = 1.99989

there. By this rearrangement of dynamics by phase renommali-
zation 4° and orthogonal transformation 1+, the constant tan
becomes non-diagonal #™* tan(8 + 7« ) *" and the isolation
of overlapped resonances 1s not attained.

Since the difficulty in disentangling background from reso-
nance couplings in the null £ and K *° representation arose
from the impossibility of the disentanglement of background
and resonance scatterings when there is overlapping resonances.
it was avoided in the present work by luniting the application
of making K and X'* null to the normal matrix part that is
devoid of overlapping resonances. Such a restrictive application
requires decomposition of tan £+ x into the normal and non-
normal matrix parts. which was accomplished by the con-
diagonalization. The method also relied on the use of x since
the minimal condition for disentangling background and
resonarnce scatterimgs was provided by R(x*) = 0.

Application of the Theory to the Study of Overapping Re-
sonances in Rare Gas Spectra. The resonance structures in the
Lu-Fano plot shown in Fig. 3 for.J = | states of argon at the
lowest ionization thresholds “P5- and “P{-. were drawn using
the NIST atomic spectra database. " Theoretical Lu-Fano curv es
were obtained using the U/, values reported by Lee and Lu™
with #, values modified to [0.20, 0.07, 0.48. 0.15, 0.12] for
better fitting to the experimental data. The resonance structures
were first compared using the eigenquantum-defect sums in
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Eigenquantum-defect sum of Ar
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Figure 5. Decomposition of the sum of the eigenquantum-defects
extracted from the Lu-Fano plot for the J = 1 states of argon &t the
lowest ionization thresholds “Pyzand “Pla.

the oniginal and con-diagonalized representations shown in
Figs. 4 and 3. respectively. Although the difference in the
eigenquantum-defect sums 1s difficult to see in the graphs in
both figures. a completely different situation would result if
S+ 82— & were compared. The sumumation relation. & = o, +
8> does not hold as shown in Fig 4 while it holds in Fig. 3
Note that in order to draw Fig. 5. an isolated resonance case
was assumed so that only the first term of the right-hand side
of Eq. (12) is included.

Two contributions to the sum of the eigenquantum defects
can be identified in Figs. 4 and 3: the increase from ~0.35t0 ~ 1.5
by one in the first half is due to &, and the increase from -~ 1.5
to ~ 2.5 by one in the second half is due to &.2. The overall
increase of 2 in the quantum defect means that there are two
resonances contributing in one unit interval of v .-, the ¢ and s
Rvdberg series. respectively.

The resonance structures can be made conspicuous using
time delays.®** The time-delays were calculated from o(E) =
2hd S(E)IdE where E is related to vy by /1.2~ Ryd/v:7 in the
present system. Note that time delays would be due to resonance
scattering alone if the energy dependence of background sca-
ttering can be neglected. As before. the time delays, 7,1, 72 and
t; due to resonance scatterings are shown in Fig. 6 for both the
original and con-diagonalized representations. Although both
representations vielded almost identical total time delays, the
time delays due to the s series were different. which was expected
because the summation relation r = 7 + 72 holds only for the
con-ciagonalized representation while not for the original one.

The resonance structures in the krypton and xenon spectra
were also analyzed using the U, values reported by Geiger”
and Dill™ with z, values modified to [0.235. 0.097.0.47. 0.12.
0.07] and [0.36. 0.12. 0.36, 0.040. -0.007], respectively, for
the best fit to the experimental data. The results for Kr and Xe
are shown. respectively. in Tables 4 and 5 and Figs. 7 and 8.
The resonance structures in both spectra are similar. showing
two resonance structures due to the s and ¢ Rydberg series.
The differences in the positions of the resonance structures
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Figure 7. Decomposition of the sum of the eigenquantum-delects
and the Lu-Fano plot for the J =1 states of krypton at the lowest
ionization thresholds "3 ~and “Py >,

can be measured by the difference in ghand & Their values
ierease from 0.04 1n argon, to 0.09 and 0.25 in knvpton and
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Figure 8. Decomposition of the sum of the cigenquantum-deleets
and Lu-Fanoe plot {or the /-1 slates ol xenon 4l the lowest 1onization
thresholds “Pisand <1,

xenon, respectivels. The contnbutions of the overlapping re-
sonances can be obtained by calculating the extent of the
defect from unity of ¥'¥. or more conveniently' from its trace
tr(3” ). Calculated valucs for 3 spectra arc included in Tables
3.4 and 3. respectively. Note that values arc closc to 2. meaning
that resonances 1n these rare gas spectra arc almost 1solated.
However, the overlapping cannot be neglected completels.,
Winigen and Friedrich related almost non-overlapping to the
vanishing widths, here, of the s scrics.” Interestinghy, the
deviation [rom unity [or from 2 for tr(}"})] was largest in
krvpton instead of argon, swhere two resonance structurcs were
located in close proximity. This anomaly is in ling with the
behavior in the variation of the values of the coupling strengths
(£7. £7) inthe and s series which are given by (0.18.0.0037).
(0.14, 0.0091) and (0.25, 0.0051) from Tables 3-5 lor argon.
krvpton and xenon, respectively. The physical nature of these
phenomena will not be examined furiher becausc the purposc
of this paper was to sel up an analysis tool of resonance
structures.

The resonance structures in the autoionization spectra of
Ar, Krand Xec inFigs. 9, [0and |1, respectively. were analvzed
using this method. The analvsis revealed a one-to-ong corres-
pondence ol the resonance structures in the autolonization
spectra with the ones manifested in time delavs. The overall
shapes were quite similar in the autolonization spectra and
time delays. However. their detailed structures diflered. cven
qualitatively. The difference was more conspicuous in the
Rvdberg scrics. The increase in the time delavs with vy -
comes [rom the factorvi- and reflects the increase i orbiting
period.



1790 Rudl Korcan Chem. Soc. 2009, Vol, 30, No. 8

Autoionization profile of Ar
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Figure 9. Oscillator strength densitics and time delays of the auto-
ionization lines in the argon spectra between the lowest ionization

thresholds “P3~and Py,
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Figure 10. Oscillator strength densitics and time delay s of the auto-
ionization lines in the kry pton spectra between the lowest ionization
thresholds P> and Py
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Figure 11, Oscillator strengih densitics and time delays of the auto-
ionization lincs in the xenon spectra between the lowest ionization
thresholds "P-and Py

Summary and Discussion

Previously, a methodology was developed for identifving
the background and resonance channels and for finding phase
renormalizations in those channels, but not in the open and
closed channels which are incompatible with the background
and resonance channels. Application of this theory to the Ne
and Kr Lu-Fano plots showed quite different but more mea-
ningful coupling strengths between the open and closed channels
in the representation, where the background scattering was
disentangled from resonance scattering,

This theory was extended to the cases involving the dege-
nerate closed channels, which is interesting in that it is the
simplest system where overlapping resonances are present
and proper handlings are thus required. The case involving
degenerate closed channels is special in that tan 5 1s a constant
matrix and commutes with any matrix. ldentification of the
resonance eigenchannels involves diagonalization of the non-
Flermitian (or, more properly, normal) symmetric complex
matrix . As non-normal svmmetrical complex matrix can
only be con-diagonalized unitarily, x** can be factonzed to V' ",
[t was found that the isolated resonances correspond to &%
normal. Therefore, deviation from normality, which was mea-
sured by the defect of 'V from unity, was used to handle the
overlapping resonances in the MQDT [ormulation systemati-
cally. The theory on con-diagonalization and con-similarity and
Takagi's factorization is essential for handling the overlapping
resonances.
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In order to compare the present method with the established
method of making A and X null. resonance structures were
derived when X *° and £ are null matrices. Resonance struc-
tures thus obtained were complicated so that individual resonance
contribution was not clearly discernible. indicating that they
were not disentangled vet. Thus making X * and X null was
found not to be sufficient to guarantee the separation of back-
ground and resonance scatterings and identification of resonance
structures in the presence of resonance overlapping. This strange
result derived essentially from the impossibility of disentangling
the background and resonance scatterings when overlapping
resonances are present. The difficulty was avoided in this work
at first by separating isolated and overlapped terms using condia-
gonalization.

The theory was applied to the rare gas spectra of Ar. Krand
Xe and the overlapping resonances present in their spectra
were analyzed. The resonance structures in the s and o series
m Ar, Kr and Xe spectra were separated and the relevant dvnamic
parameters were extracted. The separations in the resonance
positions, which were measured by the extent of the phase
renormalizations in the closed channels, increased from Ar to
Xe. However. the coupling strengths showed a different behavior.
Their magnitudes were the maxinum and minimum in Kr in
the s and ¢/ series. respectively. Overlapping between resonant
structures was found to be virtually absent in all spectra. It
was largest in the Kr spectra. showing similar tendency to the
coupling strengths between the resonance and background
scatterings. Although the line profiles were not analvzed.
Figs. 9-11 suggest that they take rather symumetric shapes in
the disentangled s and & series, which is in contrast to the
apparent asymmetric appearance in the autoionization lines
profiles. particularly in the o series.
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Appendix A: The Dernvation of Eq. (14)

Smee the phase 47 15 defined as the one of det(tan ' + &™), its
tanigent 1s given as a ratio of the detenminant's real and mmaginary
parts:

J(ahtan B, + J(a s tan

tand' = — — =
Totan g tan B, + &Y - TATHTS)

where 1 and f denote f + zu and g + ms, respectively. Using the
trigonometric relation tan(f + zg/) = (tan g + tan 7w )/(1 — tan B
tan 7y, ), both Mumerator and denominator can be expressed as qua-
dratic functions of tan £ so that tan &' can be written as

., mtan® B+ntan B +n,
tan &7, = 2 S o tan f+ (Al)
d,tan” f+d tan S+, -
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where parameters in the numerator denote

n, ==k tan gy — I ) tan age
a = tr J(a N —tan Zgy tan g, )
e = IR 0tan el + I8 G ) an s |

and ones m the denommator denote

d. =1—det J(x'““)tan 7y tan m1e;
d, = (tan e +tan mps )[1 +det I A-"“)J

d, = tan m tan 7y - det J(x'™)

Eq. (Al)can be easily transformed into Eq. (14) where #(.72. 5, and
s are obtained as tollows:

d, i'J(Il: -4d d,

2d,

s | r(n —md Fdyy=n, +md /d,
Ay =n )\ il —md fdy) +ny —md, 1 d, ).

Ha =
s

2
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