Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.3.809

Study of the Resonance Structures of the Preionizing Spectrum of Molecular Hydrogen by Phase-shifted Multichannel Quantum Defect Theory  

Lee, Chun-Woo (Center for Space-Time Molecular Dynamics, Seoul National University, Department of Chemistry, Ajou University)
Publication Information
Abstract
The resonance structure of the preionization spectrum of $H_2$ in the region immediately above its ionization threshold, ($^2{\sum}_{g}^{+}$, $\nu^+=0$, $N^+=0$) converging toward its rotationally excited ($\nu^+=0$, $N^+=2$) limit, is complicated due to perturbation by the vibrationally excited levels $7_{p\pi}\;v=1$ and $57_{p\pi}\;v=2$. The spectra of interlopers are separated from the rotationally preionizing Rydberg series to allow analysis of this complex resonance structure. Although only two vibrationally excited levels perturb the rotational preionization spectrum, at least 6 interloper Rydberg series participate in the complex spectrum over most of its energy range and more interloper series participate at a narrow range around $124500cm^{-1}$ in the spectrum. To allow handling of an arbitrary number of interloper series, MATLAB$^{(R)}$'s symbolic operation is used to perform on-the-fly formulation.
Keywords
Phase-shifted MQDT; Overlapping resonances; Preionization of $H_2$; Interlopers;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Raoult, M.; Jungen, C. J. Chem. Phys. 1981, 74, 3388.   DOI
2 Kirrander, A.; Jungen, C.; Fielding, H. H. Phys. Chem. Chem. Phys. 2010, 12, 8948.   DOI   ScienceOn
3 Lecomte, J. M. J. Phys. B 1987, 20, 3645.
4 Lee, C.-W.; Kim, J.-H. Bull. Korean Chem. Soc. 2002, 23, 1560.   DOI
5 Lee, C.-W. Bull. Korean Chem. Soc. 2009, 30, 891.   DOI
6 Lee, C.-W. Bull. Korean Chem. Soc. 2010, 31, 3201.   DOI
7 Cho, B.; Lee, C. W. Bull. Korean Chem. Soc. 2010, 31, 315.   DOI
8 Lee, C.-W. Bull. Korean Chem. Soc. 2010, 31, 1669.   DOI
9 Zwillinger, D.; 30th ed.; C R C Press: Boca Raton, 1996.
10 Lester, W. A., Jr. J. Comput. Phys. 1968, 3, 322.   DOI
11 Wind, H. J. Chem. Phys. 1965, 42, 2371.   DOI
12 Beckel, C. L.; Hansen, B. D.; Peek, J. M. J. Chem. Phys. 1970, 53, 3681.   DOI
13 Fano, U. Phys. Rev. 1961, 124, 1866.   DOI
14 Connerade, J. P. Proc. R. Soc. London, Ser. A 1978, 362, 361.   DOI
15 Lane, A. M. J. Phys. B 1984, 17, 2213.   DOI
16 Fano, U.; Cooper, J. W. Phys. Rev. 1965, 137, A1364.   DOI
17 Lee, C.-W.; Kim, J.; Gim, Y.; Lee, W.-J. J. Phys. B 2011, 44, 065002.   DOI
18 Lee, C.-W. J. Phys. B 2011, 44, 195005.   DOI
19 Kalyar, M. A.; Rafiq, M.; Baig, M. A. Phys. Rev. A 2009, 80, 052505.   DOI
20 De Graaff, R. J.; Ubachs, W.; Hogervorst, W.; Abutaleb, M. Phys. Rev. A 1990, 42, 5473.   DOI
21 Dehmer, P. M.; Chupka, W. A. J. Chem. Phys. 1976, 65, 2243.   DOI
22 Giusti-Suzor, A.; Lefebvre-Brion, H. Phys.Rev. A 1984, 30, 3057   DOI
23 Greene, C. H.; Jungene, C. Adv. At. Mol. Phys. 1985, 21, 51.   DOI
24 Fano, U. Phys. Rev. A 1970, 2, 353.   DOI
25 Atabek, O.; Dill, D.; Jungen, C. Phys. Rev. Lett. 1974, 33, 123.   DOI
26 Jungen, C.; Dill, D. J. Chem. Phys. 1980, 73, 3338.   DOI
27 Bjerre, N.; Kachru, R.; Helm, H. Phys. Rev. A 1985, 31, 1206.   DOI
28 Xu, E. Y.; Helm, H.; Kachru, R. Phys. Rev. A 1989, 39, 3979.   DOI
29 Fielding, H. H.; Softley, T. P. Phys. Rev. A 1994, 49, 969.   DOI
30 Du, N. Y.; Greene, C. H. J. Chem. Phys. 1986, 85, 5430.   DOI
31 Jungen, C.; Raoult, M. Faraday Discuss Chem. Soc. 1981, 71, 253.   DOI
32 Cooke, W. E.; Cromer, C. L. Phys. Rev. A 1985, 32, 2725.   DOI
33 Aymar, M.; Greene, C. H.; Luc-Koenig, E. Rev. Mod. Phys. 1996, 68, 1015.   DOI
34 Giusti-Suzor, A.; Fano, U. J. Phys. B 1984, 17, 215.   DOI
35 Fano, U.; Rau, A. R. P. Atomic Collisions and Spectra; Academic: Orlando, U.S.A., 1986.
36 Ueda, K. Phys. Rev. A 1987, 35, 2484.   DOI