• Title/Summary/Keyword: Overhead-line

Search Result 455, Processing Time 0.024 seconds

Automatic Algorithm for Cleaning Asset Data of Overhead Transmission Line (가공송전 전선 자산데이터의 정제 자동화 알고리즘 개발 연구)

  • Mun, Sung-Duk;Kim, Tae-Joon;Kim, Kang-Sik;Hwang, Jae-Sang
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.73-77
    • /
    • 2021
  • As the big data analysis technologies has been developed worldwide, the importance of asset management for electric power facilities based data analysis is increasing. It is essential to secure quality of data that will determine the performance of the RISK evaluation algorithm for asset management. To improve reliability of asset management, asset data must be preprocessed. In particular, the process of cleaning dirty data is required, and it is also urgent to develop an algorithm to reduce time and improve accuracy for data treatment. In this paper, the result of the development of an automatic cleaning algorithm specialized in overhead transmission asset data is presented. A data cleaning algorithm was developed to enable data clean by analyzing quality and overall pattern of raw data.

Kissing of Sub-conductors due to Magnetic Forces in a 154 kV Bundled Overhead Transmission Line (154 kV 복도체 가공송전선로에서 전자력에 의한 소도체간 접촉)

  • Kim, Sang-Beom;Noh, Hee-Won;Kim, Young-Hong;Ko, Kwang-Man;Park, Jong-Hyuk;Kim, Sang-Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.383-389
    • /
    • 2016
  • Kissing of sub-conductors due to magnetic forces has been investigated in a 154 kV bundled overhead transmission line. With increasing ampacity of the conductors and enlarging the distance between spacers, lager magnetic force was measured. When the phase ampacity was 2,000 amps and the distance between two adjacent spacers was 68 m, for instance, the conductors became unstable and vibrated with a frequency of several herts. Furthermore, when the ampacity was 2,250 amps and the distance between spacers was 136 m, the two sub-conductors were contacted. Analysing the magnetic forces with distance of spacers, the safe distance of spacers to avoid contact of sub-conductors was presented. The change of the safe distance is discussed due to various parameters, such as residual stresses and wind pressures, in the real transmission lines.

Application and Evaluation of Emergency Rates in Overhead Transmission Lines (가공송전선로의 비상용량 응용과 평가)

  • Kim, Sung Duck
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.442-446
    • /
    • 2014
  • A method for applying emergency ratings to improve the reliability of power supply in ACSR overhead transmission lines is described in this paper. Due to re-regulate power industry, most power companies worldwide as well KEPCO have been searching for only economical strategies without new investment. Power demand was rapidly increasing, however, generation amount did not follow sufficiently. Hence in order to increase the transmission capacity for the existing transmission lines in case of peak load, or contingency in transmission lines, an application method of emergency ratings such as short or long term rating is proposed. If applying long term emergency rating instead of static line rating for the period of a peak load, power transmission can be increased to 10 % or more. Furthermore, it was shown that emergency rating can be effectively used in the contingency of double-circuit transmission lines and/or overload cases.

Analysis of Percentage of Arcing between Pantograph and Overhead Contact Line as a Function of Duration of Arc (팬터그래프와 전차선간 최소 이선아크 지속시간에 따른 이선율 변화량 분석)

  • Park, Young;Lee, Kiwon;Kwon, Sam-Young;Park, Chulmin;Kim, Jae-Kwang;Choi, Won Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.855-859
    • /
    • 2014
  • Quality criteria for interaction between a pantograph and overhead contact wire is a most important requirement to assess of the performance for the current collection system. Interaction performance between pantograph and catenary system is subject to approval by the infrastructure manager when a new design and contraction of overhead contact line and pantograph are installed. Among the various performance, percentage of arcing at maximum line speed is a simple test method compared with contact force of pantograph due to direct sensing of pantagraph, calibrations, installations of train, and etc. On the other hand, percentage of arcing is need to reliable arcing detector and general requirements with accordance with EN 50317. In this paper, percentage of arcing are investigated on the function of duration of arc and proposed which is satiable of percentage of arcing. As a results, we proposed which duration of arcs are unsuitable from infrastructures point of view as performance testing for quality of current collection.

Development of Catenary Stagger and Height Measurement System using Laser (레이저를 이용한 전차선 편위 및 높이 측정 시스템 개발)

  • Song, Sung-Gun;Lee, Teak-Hee;Song, Jae-Yeol;Park, Seong-Mo
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.569-574
    • /
    • 2008
  • Catenary and Pantograph are used to transmit electrical energy to electric railways. Catenary (Overhead Contact Lines) should be installed precisely and managed for stable train operations. But external factors such as weather, temperature, etc., or aging affect catenary geometry. Changed catenary stagger and height cause high voltage spark or instant electric contact loss. Big spark derived from contact loss can damage the pantograph carbon strip and overhead contact lines that might interrupt the train operations. Therefore, to prevent a big scale spark or electric contact loss, catenary maintenance are required catenary geometry measurement systems with catenary maintenance capability. In this paper, we describe the development of catenary height and stagger measurement system. The catenary height and stagger measurement system uses Acuity company's AR4000 Laser Range Finder for distance measurement and AccuRange Line Scanner for degree measurement. This system detects suspicious overhead line sections with excessive stagger and height stagger variance.

A Study on the Ground Fault Current Distribution by Single Phase-to-Neutral Fault Tests in Power Distribution System (배전계통에서 1선 지락고장 시험에 의한 지락고장전류 분류에 관한 연구)

  • Kim, Kyung-Chul;You, Chang-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.37-44
    • /
    • 2013
  • Phase to ground faults are possibly one of the maximum number of faults in power distribution system. During a ground fault the maximum fault current and neutral to ground voltage will appear at the pole nearest to the fault. Distribution lines are consisted of three phase conductors, an overhead ground wire and a multigrounded neutral line. In this paper phase to neutral faults were staged at the specified concrete pole along the distribution line and measured the ground fault current distribution in the ground fault current, three poles nearest to the fault point, overhead ground wire and neutral line. A simplified equivalent circuit model for the distribution system under case study calculated by using MATLAB gives results very close to the ground fault current distribution yielded by field tests.

Development of Hold on Swing a Jumper Support String for Overhead Transmission Line (송전선로 점퍼선 횡진방지용 지지애자장치 개발)

  • Baik, Seung-Do;Min, Byeong-Wook;Wi, Hwa-Bog;Park, Kee-Yong;Keum, Eui-Yeon;Jeong, Heon-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.521-523
    • /
    • 2005
  • A Jumper wire is currently used to connect each fixed power line on both sides of dead end tower for overhead transmission line, but in case of a jumper wire swing under circumstances of typhoon, etc. and the air clearance is deficient then a flashover fault may Happen. Now the angle tower has the jumper support string to prevent a swing of jumper wire and to secure the air clearance between jumper wire and tower main body, but the flashover fault by swing of jumper wire was happened yl times across all over the country, because of the typhoon 'Rusa' in year 2002 and 'Maemi' in year 2003. This paper presents the design and development of 'Counter Weight' which enables to keep the swing angle of jumper wire under 40 degree in design condition to prevent a flashover fault by swing of jumper wire by a high wind pressure load in case of typhoon and have completed a mechanical and electrical characteristic test.

  • PDF

Development of Corona Cage Measurement System for Simulation on Electrical Environmental Characteristics of HVDC Overhead Transmission Line (HVDC 가공 송전선로 전기환경특성 모의시험용 코로나 케이지 계측시스템 개발)

  • Kil, Gyung-Suk;Yang, Kwang-Ho;Lee, Sung-Doo;Ju, Mun-No
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.5
    • /
    • pp.245-249
    • /
    • 2006
  • Corona characteristics of conductors are dependent on the electric field conditions in the immediate vicinity of the conductors. In case of DC transmission line, particularly, the space charge plays an important role in the electric field distribution. Therefore, DC corona cage simulation is necessary for long-term test in the same conditions. This paper presents the results of designing and constructing hardwares such as DC power supply, measurement system and DAS to carry out the simulation. The corona cage longitudinally is divided into five equal length sections and three inner sections of those are isolated from the ground of outer cage. The measurement items are radio noise, corona current, television noise, audible noise and meteorological conditions. In the next step, various simulations about the type and configuration of two or three candidate conductors will be conducted. And then finally an environmentally-friendly conductor for HVDC overhead transmission line will be decided.

Analysis of Characteristic Frequency along Fault Distance on a Transmission Line (송전 선로의 사고 거리에 따른 특성 주파수 해석)

  • 남순열;홍정기;강상희;박종근
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.8
    • /
    • pp.432-437
    • /
    • 2004
  • Since the characteristic frequency is decreased in proportion to the fault distance, the characteristic frequency component may be insufficiently eliminated by a low-pass filter on a long transmission line. In order to set a standard for the cut-off frequency of the low-pass filter, this paper proposes a method for obtaining the characteristic frequencies due to line faults. The application results of the proposed method are presented for line to ground (LG) faults and line to line (LL) faults on a 345 kV 200 km overhead transmission line. The EMTP is used to generate fault signals under different fault locations and fault inception angles. By comparison between the characteristic frequencies obtained from the proposed method and the EMTP simulation, it is shown that the proposed method accurately obtains the characteristic frequency.

Development of a Pulley-type Tensioning Device (도르래식 장력조정장치 개발)

  • Lee, Ki-Won;Cho, Yong-Hyeon;Park, Young
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.663-669
    • /
    • 2009
  • In the electrical railway, the increase of tensions in an overhead contact lines is essential to speed-up of train, because current collection quality largely depends on the ratio of a wave propagation speed to a train speed. For Kyungbu high-speed line, a pulley-type tensioning device is required to have a tension variation of maximum 3%. Therefore we developed a pulley-type tensioning device in order to meet tension variation requirement of the high-speed tensioning device. To verify the performance of the developed device, a performance test, overload test and failure test were carried out according to the factory test procedure of the Kyung-Bu High-speed line. Furthermore, we also performed reliability performance through not only a fatigue test in a factory, but also on-line verification test in Chungbuk line for over 1 year. These tests verified that the tensioning device had applicability to a main line.