• Title/Summary/Keyword: Overhead power lines

Search Result 175, Processing Time 0.025 seconds

Development of Optimal Sensor for Diagnostic System in Overhead Distribution Power Lines (가공 배전선로 진단시스템을 위한 최적 센서 개발)

  • Lee, Kyeong-Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.670-675
    • /
    • 2015
  • Degradation diagnosis of cable is one of major issues for operation and maintenance in overhead distribution power lines. The diagnostic system for overhead power lines is composed of three parts in functional aspect - a travelling unit, a sensing unit and a communication unit. Among them, sensor detects the defects such as corrosion and disconnecting of power lines. Performance of sensor is very important, and besides, the size and structure of sensor is restricted for installation to small and lightweight diagnostic system. This paper suggests an optimal eddy current sensor best suit for small and lightweight diagnostic system in consideration of detecting performance, size and ease of installation and so on. Proposed sensor has been designed by Drum core structure and can be applied to the all domestic overhead power lines regardless of the cross-sectional areas. Also, it is showed that results of mock environmental test are satisfied.

Installation methods of OPGW for 765kV overhead power transmission lines (765kV 가공 송전선로용 OPGW 시설공법)

  • Kwan, Y.G.;Kim, Y.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1641-1643
    • /
    • 1998
  • In recent the maximum voltage of overhead power transmission lines in Korea was upgraded to 765kV. In general a overhead ground wire is installed for protecting overhead power transmission lines from lightning. For the 765kV line, Composite Overhead Ground Wire with Optic Fiber (OPGW) is applied as a overhead ground wire and have a function of the communication line between substations. In this paper, the construction and properties of OPGW, and its installation methods are discribed.

  • PDF

Maintenance Priority Index of Overhead Transmission Lines for Reliability Centered Approach

  • Heo, Jae-Haeng;Kim, Mun-Kyeom;Kim, Dam;Lyu, Jae-Kun;Kang, Yong-Cheol;Park, Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1248-1257
    • /
    • 2014
  • Overhead transmission lines are crucial components in power transmission systems. Well-designed maintenance strategy for overhead lines is required for power utilities to minimize operating costs, while improving the reliability of the power system. This paper presents a maintenance priority index (MPI) of overhead lines for a reliability centered approach. Proposed maintenance strategy is composed of a state index and importance indices, taking into account a transmission condition and importance in system reliability, respectively. The state index is used to determine the condition of overhead lines. On the other hand, the proposed importance indices indicate their criticality analysis in transmission system, by using a load effect index (LEI) and failure effect index (FEI). The proposed maintenance method using the MPI has been tested on an IEEE 9-bus system, and a numerical result demonstrates that our strategy is more cost effective than traditional maintenance strategies.

A Study on Overvoltage Reduction Method of Single Point Bonded Section on Combined Transmission Lines (혼합송전선로 편단접지 구간 과전압 저감 방안에 관한 연구)

  • Jung, Chae-Kyun;Kang, Ji-Won;Park, Hung-Sok;Kim, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1881-1887
    • /
    • 2009
  • This paper discusses the effects of ECC (Earth Continuity Conductor) for reducing the level of induced sheath overvoltages at the single point bonded section of combined transmission lines which are mixed underground power cable with overhead line in one T/L. In previous papers, the characteristics of ECC on only underground power cable systems were sufficiently analyzed. However, the result of only underground power cable systems are totally different from that of combined transmission lines because ECC is commonly grounded with overhead grounding wire at mesh of cable head. Therefore, in this paper, the installation effects of ECC have been variously analyzed considering the three kinds of fault positions, cable formation of duct and trefoil, spacing between phase conductor and ECC, and the change of overhead transmission line section length on 154kV combined transmission line. Finally, simulation results show that ECC can effectively reduce the induced sheath voltage.

Impedance measurement and analysis of overhead medium voltage power lines for broad band power line communication (BPLC) ($1{\sim}30MHz$ 광대역 전력선 통신을 위한 고압 배전선의 임피던스 특성 측정 및 해석)

  • Park, Young-Jin;Lee, Jae-Jo;Kim, Kwan-Ho;Lee, Won-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2345-2347
    • /
    • 2005
  • In this paper, impedance characteristics of overhead medium-voltage (MV) power lines is reported for power line communication (PLC) over an MV power line network. For analysis, a two-port equivalent network model of MV power lines is derived. By applying the transmission line theory, reflection behavior and impedance of power lines are investigated. For verification, impedance of power lines is measured at a test field for an MV PLC. The results show that impedance of MV power lines is between $200{\Omega}$ and $300{\Omega}$ and converges to a half of their characteristic impedance.

  • PDF

Power Frequency Magnetic Field Reduction Method for Residents in the Vicinity of Overhead Transmission Lines Using Passive Loop

  • Lee, Byeong-Yoon;Myung, Sung-Ho;Cho, Yeun-Gyu;Lee, Dong-Il;Lim, Yun-Seog;Lee, Sang-Yun
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.829-835
    • /
    • 2011
  • A power frequency magnetic field reduction method using passive loop is presented. This method can be used to reduce magnetic fields generated within the restricted area near transmission lines by alternating current overhead transmission lines. A reduction algorithm is described and related equations for magnetic field reduction are explained. The proposed power frequency magnetic field reduction method is applied to a scaled-down transmission line model. The lateral distribution of reduction ratio between magnetic fields before and after passive loop installation is calculated to evaluate magnetic field reduction effects. Calculated results show that the passive loop can be used to cost-effectively reduce power frequency magnetic fields in the vicinity of transmission lines generated by overhead transmission lines, compared with other reduction methods, such as active loop, increase in transmission line height, and power transmission using underground cables.

A Novel Algorithm for Fault Type Fast Diagnosis in Overhead Transmission Lines Using Hidden Markov Models

  • Jannati, M.;Jazebi, S.;Vahidi, B.;Hosseinian, S.H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.742-749
    • /
    • 2011
  • Power transmission lines are one of the most important components of electric power system. Failures in the operation of power transmission lines can result in serious power system problems. Hence, fault diagnosis (transient or permanent) in power transmission lines is very important to ensure the reliable operation of the power system. A hidden Markov model (HMM), a powerful pattern recognizer, classifies events in a probabilistic manner based on fault signal waveform and characteristics. This paper presents application of HMM to classify faults in overhead power transmission lines. The algorithm uses voltage samples of one-fourth cycle from the inception of the fault. The simulation performed in EMTPWorks and MATLAB environments validates the fast response of the classifier, which provides fast and accurate protection scheme for power transmission lines.

Development of overhead distribution line diagnosis system program (가공 배전선로 진단시스템 프로그램 개발)

  • Dong Hyun Chung;Deok Jin Lee
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.81-87
    • /
    • 2023
  • In this paper, accidents in high-voltage overhead distribution lines, which provide stable power supply in the power system, cause inconvenience in life and disruption of production of companies. 22.9 [kV] high-voltage overhead power distribution lines aim to improve reliability and stability, such as damage caused by rain, snow, wind, etc., or electric shock prevention. Therefore, in order to prevent wire disconnection accidents due to deterioration of electrical conductivity or tensile strength due to corrosion of overhead distribution lines, it is necessary to prevent unexpected accidents in the future through regular inspection and repair. In order to diagnose deterioration due to corrosion of distribution lines, a diagnostic system (measuring instrument) is installed on the wires to monitor the condition of the wires. The manager on the ground receives the measured data through ZigBee wireless communication, controls the diagnosis system through the diagnosis system program, and grasps the condition of the overhead distribution line through the measured data and photographed photos, and predicts the life of the wire along with the visual inspection method. developed a program.

Measurement and Analysis of Electric and Magnetic Fields Near Overhead Transmission Lines (송전선로의 전자계 크기 측정 및 분석)

  • Kim, Sang-Beam;Cho, Seong-Bae;Shin, Koo-Yong;Lee, Dong-Il;Kim, Jeong-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1908-1910
    • /
    • 1997
  • The electric and magnetic fields (EMFs) near 345/154 kV overhead transmission lines were measured. The average values of maximum electric field and magnetic field for 44 transmission lines were 1.11 kV/m and 24.5 mG, respectively. These values were lower than any standards of advanced countries. The EMFs of distribution lines and substation, and electric appliances were also measured and compared with those of transmission lines.

  • PDF

Theoretical and Experimental Analysis of Extremely Low Frequency Magnetic Field in the Vicinity of the Transformer Station of Overhead Power Lines

  • Ghnimi, Said;Rajhi, Adnen;Gharsallah, Ali;Bizid, Youssef
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1655-1662
    • /
    • 2018
  • This paper studies the magnetic fields between the power lines which are finite length and other ones which are infinitely long around the first tower in the proximity of the power transformers. They will be used as a source of disturbance applied to the power line. The method applied in this study was gradual; develop the theoretical formulation of the magnetic fields of these lines which are finite length and other ones which are infinitely long, examine the effects of different couplings between the different neighboring lines and the distribution transformers on behavior of magnetic fields. The method also focused on the experimental results analyzing the magnetic fields which will be used as a source applied to the auditory implants EMC. The theoretical and experimental results were compared and discussed for three power lines (90kV, 150kV and 225kV) near the power station, and it proved the effect of these substations on the simulated and measured results of the magnetic field. The maximum intensities of magnetic fields measured at the height of 1m from the ground for the circuit of three lines close to each substation were significantly lower than the ICNIRP reference levels for occupational and non occupational exposures.