• Title/Summary/Keyword: Overall Vibration

Search Result 417, Processing Time 0.023 seconds

Development of a Garlic Clove Planter (II) - Design factors for a garlic clove planter - (마늘파종기 개발에 관한 연구 (II) - 마늘파종기의 설계요인 -)

  • 박원규;최덕규;김영근
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.547-556
    • /
    • 2002
  • Upright positioning of garlic cloves in mechanical planting has been considered as an essential process because pose of garlic affects not only initial budding and rooting of garlics but quality and yield. Due to the geometrical uniqueness and irregularity of garlic cloves in shape, manual planting operation has been conducted. The overall objective of this research was to determine design factors for designing a garlic clove planter The results are summarized as follows : 1. A vibrating-type clove-metering device was designed and tested. Effects of tilted angle of metering plate and magnitude of vibration on metering performance were investigated. The successful planting rates of the metering device were 96.7% for Hanji varieties. 2. Clove upright-positioning device, posture inducer was designed and tested. When the clearance between the hoppers was set at 4mm, the rates of upright positioning of the device were 92.2% for with Hanji varieties. 3. Optimum metering performance was observed at the plate tilted angle of 80。 with the posture type positioning device.

A Study on the Strain of Greenhouse Frame by Typhoon (태풍에 의한 온실구조재의 변형도 고찰)

  • 이수근;윤용철;서원명
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.439-446
    • /
    • 1999
  • This research was performed to study the actual behavior of 1-2W type pipe greenhouse under the influence of typhoon by measuring the vairous strains instructural materials. These results can eventually be utilized in the desgin criteria as well as in the modification of conventional equaltion for calcu more realistic wind loads. Tehfirst data under the influence of Typhoon Olga arrived in Jinju on Aug. 1999. Were obtained by strain gage with 10 sensor points. According to the data obtained, the typical variation ofstrain depending on wind patter could be observed. The strains in structural frame were fluctuated very sensitively depending on the direction and magnitude of wind velocity. But some of the data were lost or missed by system's failure. A kind of inherent vibration pattern of greenhouse pipe frame was observed from the plotted data, but this phenomenon is not so clear as to be separated from the overall fluctuation so far. This experimental research is expected to be continued as a long term project to measure and analyze the strain pattern of structural frame depending on the various locations and section characteristics by wasy of adopting more efficientg instrument with sufficient number of measuring points and accuracy.

  • PDF

The Strain of Pipe Framed Greenhouse by Typhoon (태풍에 의한 파이프 골조 온실의 변형도)

  • Suh, Won-Myung;Yoon, Yong-Cheol
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.99-106
    • /
    • 2002
  • This research was performed to study the actual behavior of 1-2W type pipe greenhouse under the influence of typhoon by measuring the various strains in structural materials. These results can eventually be utilized in the design criteria as well as in the modification of conventional equation for calculating more realistic wind loads. The first data under the influence of Typhoon Olga arrived in Jinju on Aug. 1999 were obtained by strain gage with 10 sensor points. According to the data obtained, the typical variation of strain depending on wind pattern could be observed. The strains in structural frame were fluctuated very sensitively depending on the direction and magnitude of wind velocity. But some of the data were lost or missed by system's failure. A kind of inherent vibration pattern of greenhouse pipe frame was observed from the plotted data, but this phenomenon is not so clear as to be separated from the overall fluctuation so far. This experimental research is expected to be continued as a long term project to measure and analyze the strain pattern of structural frame depending on the various locations and section characteristics by way of adopting more efficient instrument with sufficient number of measuring points and accuracy.

Dynamic Characteristics of the Long Span Truss-Type Lift Gate by Model Test (모형실험에 의한 장지간 트러스형 리프트 게이트의 진동 특성)

  • Lee, Seong Haeng;Hahm, Hyung-Gil;Ryu, Goang Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.117-123
    • /
    • 2015
  • An experimental study of model truss-type vertical gate consisting of a truss and a plate was presented in this paper to examine the structural dynamics of the gates. A 1:61 scale model was constructed for the 95 m prototype gate using an acrylic truss and an acrylonitrile butadiene styrene plate. The scaled model was tested in a 1.6 m wide concrete flume for two orientations to determine the effects of gate orientation on structural vibrations. Natural frequencies of the model gate was measured and calibrated with FEM predictions. Vertical vibrations were measured under various operational conditions, including a range of bottom opening heights and different upstream and downstream water levels. The gate model with reverse direction was preferred due to its low overall vibrational response and flow level combinations. The test results also provide a basic dataset for development of operations guidelines that minimize flow-induced vibrations of the gates.

The Construction of Initial Analytical Models Structural Health Monitoring of a Masonry Structure

  • Kim, Seonwoong;Kim, Ji Young;Hwang, In Hwan
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.3
    • /
    • pp.191-198
    • /
    • 2015
  • It is important to accurately predict structural responses to external excitations such as typhoons and earthquakes when designing structures for serviceability. One of the key procedures to predict reliable vibration responses is to evaluate accurate structural dynamic properties using finite element (FE) models, which properly represent the realistic behavior of buildings. In the case of historic masonry buildings, structural damage could also be caused by ambient vibrations or impacts. Therefore, the preservation plans of historic buildings for low-level vibrations or impacts should be provided by analyzing structural damages within serviceability levels. For this purpose, it is required to provide FE model construction and response analysis methods verified with field measurement data. In this research, long-term field measurement was performed for a cathedral and its dynamic properties were evaluated using measured data. Then, the model was calibrated based on the measured dynamic properties and an overall construction method for the masonry cathedral was proposed. Using the measured accelerations, the vibrations of the belfry were analyzed using the calibrated FE model and finally, the FE model for the cathedral was verified by comparing the measured accelerations with the modeled results.

Comparisons on Specifications of Mating Electrical Connectors for NASA Standard Initiators (나사 표준 착화기 (NASA Standard Initiators) 연결 전기 커넥터의 규격 비교)

  • Kim, In Sung;Jeong, Eun Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.418-422
    • /
    • 2017
  • Based on published materials, we compared specifications of mating electrical connectors for the NASA Standard Initiators NSI-1,2,3 with each other after the initiator specifications summary. The mating connector specifications for NSI-1,2 are MSFC-40M38298 and MIL-DTL-26482, series1 while for NSI-3 is MIL-DTL-38999, series3. The MIL-DTL-38999, series3 has the highest overall environmental resistance performance. MSFC-40M38298 is the next and MIL-DTL-26482, series1 follows. In particular, if initiators be used under severe shock and vibration environments, the MIL-DTL-38999, series3 should be applied.

  • PDF

Seismic isolation performance sensitivity to potential deviations from design values

  • Alhan, Cenk;Hisman, Kemal
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.293-315
    • /
    • 2016
  • Seismic isolation is often used in protecting mission-critical structures including hospitals, data centers, telecommunication buildings, etc. Such structures typically house vibration-sensitive equipment which has to provide continued service but may fail in case sustained accelerations during earthquakes exceed threshold limit values. Thus, peak floor acceleration is one of the two main parameters that control the design of such structures while the other one is peak base displacement since the overall safety of the structure depends on the safety of the isolation system. And in case peak base displacement exceeds the design base displacement during an earthquake, rupture and/or buckling of isolators as well as bumping against stops around the seismic gap may occur. Therefore, obtaining accurate peak floor accelerations and peak base displacement is vital. However, although nominal design values for isolation system and superstructure parameters are calculated in order to meet target peak design base displacement and peak floor accelerations, their actual values may potentially deviate from these nominal design values. In this study, the sensitivity of the seismic performance of structures equipped with linear and nonlinear seismic isolation systems to the aforementioned potential deviations is assessed in the context of a benchmark shear building under different earthquake records with near-fault and far-fault characteristics. The results put forth the degree of sensitivity of peak top floor acceleration and peak base displacement to superstructure parameters including mass, stiffness, and damping and isolation system parameters including stiffness, damping, yield strength, yield displacement, and post-yield to pre-yield stiffness ratio.

System identification of high-rise buildings using shear-bending model and ARX model: Experimental investigation

  • Fujita, Kohei;Ikeda, Ayumi;Shirono, Minami;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.843-857
    • /
    • 2015
  • System identification is regarded as the most basic technique for structural health monitoring to evaluate structural integrity. Although many system identification techniques extracting mode information (e.g., mode frequency and mode shape) have been proposed so far, it is also desired to identify physical parameters (e.g., stiffness and damping). As for high-rise buildings subjected to long-period ground motions, system identification for evaluating only the shear stiffness based on a shear model does not seem to be an appropriate solution to the system identification problem due to the influence of overall bending response. In this paper, a system identification algorithm using a shear-bending model developed in the previous paper is revised to identify both shear and bending stiffnesses. In this algorithm, an ARX (Auto-Regressive eXogenous) model corresponding to the transfer function for interstory accelerations is applied for identifying physical parameters. For the experimental verification of the proposed system identification framework, vibration tests for a 3-story steel mini-structure are conducted. The test structure is specifically designed to measure horizontal accelerations including both shear and bending responses. In order to obtain reliable results, system identification theories for two different inputs are investigated; (a) base input motion by a modal shaker, (b) unknown forced input on the top floor.

Dynamic response of rotor-bearing systems under seismic excitations (지진 하중을 받고 있는 회전축-베어링 시스템의 동적 거동에 관한 연구)

  • 김기봉;김양한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.992-1002
    • /
    • 1988
  • The dynamic response of rotor-bearing systems subjected to six-component nonststionary earthquake ground accelerations is analyzed. The governing equations of motion for the rotor are derived using Lagrangian approach. The six-component earthquake inputs result in both inhomogeneous and parametric excitations, so that the conventional spectral analysis of random vibration is not applicable. The method of Monte Carlo simulation is utilized to simulate the six-component nonstationary earthquake ground motions and to determine the response statistics of rotor-bearing systems. The significant influences due to rotational motions of seismic base on the overall structural response is demonstrated by a numerical example.

A Study on the Dynamic Response Analysis of Shell Structure with Impulsive Load by Reanalysis Technique (재해석 기법에 의한 충격 하중을 받는 쉘 구조물의 동적 응답 해석에 관한 연구)

  • 배동명
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.2
    • /
    • pp.132-151
    • /
    • 1993
  • The proposed method in this paper. termed the substructural reanalysis technique, utilizes the computational merits of the component mode synthesis technique and of reanalysis technique for the design sensitivities of the dynamic characteristics of substructurally combined structure. It is shown that the dynamic characteristics of the entire structure can be obtained by synthesizing the substructural eigensolution and the characteristics of the eigensolution for the design variables of the modifiable substructure. In this paper , the characteristics of the eigenvalue problems obtained by this proposed method are compared to exact eigensolution in terms of accuracy and computational efficiency. and the advantage of this proposed method as compared to the direct application of the whole structure and experimental results is demonstrated through examples of numerical calculation for the dynamic characteristics (natural frequencies and mode shapes) of a flexible vibration of thin cylinderical shell with branch shell under 2-end fixed positions, boundary condition. Thin cylinderical shell of overall length 1280mm, external diameter 360mm, thickness 3mm with branch shell is made of mild steel. The load condition for dynamic response in this paper is impulsive load of which magnitude is 10kgf, which have short duration of 0.1 sec. and time interval applied to calculate. $\Delta$T is 1.0$\times$10 super(-4) seconds.

  • PDF