• 제목/요약/키워드: Output Voltage Control

Search Result 1,959, Processing Time 0.028 seconds

A New Overmodulation Strategy for Traction Dirve. (견인용 인버터를 위한 새로운 과변조 기법)

  • 배본호;설승기;김상훈;이인석;한성수
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.171-178
    • /
    • 1998
  • This paper proposes a new overmodulation strategy to give a better voltage utilization by tracking voltage vector along hexagon sides. This strategy enables the inverter to control both magnitude and angle of current. Therefore, the vector control using this strategy can lead to better output torque dynamics compared to the conventional slip frequency control with six-step voltage, which is widely used in the traction drive. In this strategy, the d-axis output voltage of a current controller to control the flux is conserved and the q-axis output voltage to control the torque is controlled to place the voltage vector on the hexagon boundary In case of overmodulation. The limited q-axis voltage is used for anti-windup of q-axis current controller. This paper also presents a new field weakening scheme which incorporate the proposed overmodulation strategy. In this scheme, the flux level is selected by both required current limit and the available maximum voltage along hexagon sides. The validity of the proposed overall scheme is confirmed by the computer simulations for a typical traction drive with a 210[㎾] induction motor.

  • PDF

Instantaneous Voltage Control of PWM Converters Using Feedback Linearization (궤환선형화 기법을 이용한 PWM 컨버터의 순시전압 제어)

  • 이지명;이기도;이동춘
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.175-183
    • /
    • 1999
  • For fast response of the dc output voltage in P\hi1'v1 converter, it is desirable that the relation of power balance of the i input and output terminals is introduced to the system modeling. In this case, controller desi밍1 is not easy since the m model is nonlinear. In this paper, a nonlinear control them${\gamma}$ using input-output feedback linearization is used to solve t the nonlinear problem of the system. By nonlinear control. the voltage transient response can be faster, and it is also p possible to control the output voltage to be constant with smaller output filter capacitance for load disturbance.

  • PDF

Input Series-Output Parallel Connected Converter Configuration for High Voltage Power Conversion Applications

  • Kim, Jung-Won;You, J.S.;Cho, B.H.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.201-205
    • /
    • 1998
  • In this paper, the charge control with the input voltage feed forward is proposed for the input series-output parallel connected converter configuration for high voltage power conversion applications. This control scheme accomplishes the output current sharing for the output-parallel connected modules as well as the input voltage sharing for the input-series connected modules for all operating conditions including the transients. It also offers the robustness for the component value mismatches among the modules.

  • PDF

Voltage Balancing Control of Input Voltage Source Employing Series-connected Capacitors in 7-level PWM Inverter (7-레벨 PWM 인버터의 직렬 커패시터 입력전원의 전압균형제어)

  • Kim, Jin-San;Kang, Feel-soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.209-215
    • /
    • 2018
  • This paper present a 7-level PWM inverter adopting voltage balancing control to series-connected input capacitors. The prior proposed 7-level PWM inverter consists of dc input source, three series-connected capacitors, two bidirectional switch modules, and an H-bridge. This circuit topology is useful to increase the number of output voltage levels, however it fails to generate 7-level in output voltage without consideration for voltage balancing among series-connected capacitors. Capacitor voltage imbalance is caused on the different period between charging and discharging of capacitor. To solve this problem, we uses the amplitude modulation of carrier wave, which is used to produce the center output voltage level. To verify the validity of the proposed control method, we carried out computer-aided simulation and experiments using a prototype.

A Study on DC output voltage control of single-phase senseless PFC converter (단상 센서리스 PFC 컨버터의 직류출력전압 제어에 관한 연구)

  • 문상필;강욱중;권순걸;서기영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.58-65
    • /
    • 2003
  • The conventional single phase PFC converter can control DC voltage to steady standard value but control system is system is complex and expensive and has rapidity problems because of controlled by detecting DC voltage, AC voltage and current. In order to solve those problems, this paper proposes senseless PFC converter circuit. The proposed circuit can control the whole system by detecting AC voltage waveform And it directly controlled DC output voltage by the controlled voltage value Kd(Ed/Ea). The fluctuation ratio of DC output voltage is changed by the circuit characteristics These characteristics are confirmed by some experimental results.

DC voltage control by drive signal pulse-width control of full-bridged inverter

  • Ishikawa, Junichi;Suzuki, Taiju;Ikeda, Hiroaki;Mizutani, Yoko;Yoshida, Hirofumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.255-258
    • /
    • 1996
  • This paper describes a DC voltage controller for the DC power supply which is constructed using the full-bridged MOS-FET DC-to-RF power inverter and rectifier. The full-bridged MOS-FET DC-to-RF inverter consisting of four MOSFET arrays and an output power transformer has a control function which is able to control the RF output power when the widths of the pulse voltages which are fed to four MOS-FET arrays of the fall-bridged inverter are changed using the pulse width control circuit. The power conversion efficiency of the full-bridged MOS-FET DC-to-RF power inverter was approximately 85 % when the duty cycles of the pulse voltages were changed from 30 % to 50 %. The RF output voltage from the full-bridged MOS-FET DC-to-RF inverter is fed to the rectifier circuit through the output transformer. The rectifier circuit consists of GaAs schottky diodes and filters, each of which is made of a coil and capacitors. The power conversion efficiency of the rectifier circuit was over 80 % when the duty cycles of the pulse voltages were changed from 30 % to 50 %. The output voltage of the rectifier circuit was changed from 34.7V to 37.6 V when the duty cycles of the pulse voltages were changed from 30 % to 50 %.

  • PDF

Input Voltage Sharing Control for Input-Series-Output-Parallel DC-DC Converters without Input Voltage Sensors

  • Guo, Zhiqiang;Sha, Deshang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.83-87
    • /
    • 2012
  • Input-series-output-parallel (ISOP) modular converters consisting of multiple modular DC/DC converters can enable low voltage rating switches for use in high voltage input applications. In this paper, an input voltage sharing control strategy for input-series-output-parallel (ISOP) full-bridge (FB) DC/DC converters is proposed. By sensing the difference in the input current of two modules, the system can achieve input voltage sharing for DC-DC modules. The effectiveness of the proposed control strategy is verified by simulation and experimental results obtained with a 200w-50kHz prototype.

Secondary Indirect Constant Voltage Control Technique for Hybrid Solid State Transformer using Primary Side Information (하이브리드 반도체 변압기의 1차측 정보를 이용한 2차측 간접 정전압 제어 기법)

  • Lee, Taeyeong;Yun, Chun-Gi;Cho, Younghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.420-423
    • /
    • 2020
  • This study proposes an indirect constant voltage control algorithm for hybrid solid-state transformers (HSSTs) by using primary side information. Considering the structure of HSSTs, measuring voltage and current information on the primary side of a transformer is necessary to control the converter and inverter of the power converter. The secondary side output voltage is measured to apply the conventional secondary side constant voltage control algorithm, and thus, the digital control board requires the same rated insulation voltage as that of the transformer. To solve this problem, the secondary voltage of the transformer obtained from the tap voltage is used. Moreover, output voltage decreases as load increases because the proposed indirect constant voltage control scheme does not consider the cable impedance between the secondary output terminal and the load. This study also proposes a technique for compensating the secondary output voltage by using the primary current of the transformer and the resistance value of the cable. An experiment is conducted using a scale-down HSST prototype consisting of a 660 V/220 V tap transformer. The problem of the proposed indirect constant voltage control strategy and the improvement effect due to the application of the compensation method are compared using the derived experimental results.

DSP Based Series-Parallel Connected Two Full-Bridge DC-DC Converter with Interleaving Output Current Sharing

  • Sha, Deshang;Guo, Zhiqiang;Lia, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.673-679
    • /
    • 2010
  • Input-series-output-parallel (ISOP) connected DC-DC converters enable low voltage rating switches to be used in high voltage input applications. In this paper, a DSP is adopted to generate digital phase-shifted PWM signals and to fulfill the closed-loop control function for ISOP connected two full-bridge DC-DC converters. Moreover, a stable output current sharing control strategy is proposed for the system, with which equal sharing of the input voltage and the load current can be achieved without any input voltage control loops. Based on small signal analysis with the state space average method, a loop gain design with the proposed scheme is made. Compared with the conventional IVS scheme, the proposed strategy leads to simplification of the output voltage regulator design and better static and dynamic responses. The effectiveness of the proposed control strategy is verified by the simulation and experimental results of an ISOP system made up of two full-bridge DC-DC converters.

A SiGe HBT Variable Gain Driver Amplifier for 5-GHz Applications

  • Chae Kyu-Sung;Kim Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.356-359
    • /
    • 2006
  • A monolithic SiGe HBT variable gain driver amplifier(VGDA) with high dB-linear gain control and high linearity has been developed as a driver amplifier with ground-shielded microstrip lines for 5-GHz transmitters. The VGDA consists of three blocks such as the cascode gain-control stage, fixed-gain output stage, and voltage control block. The circuit elements were optimized by using the Agilent Technologies' ADSs. The VGDA was implemented in STMicroelectronics' 0.35${\mu}m$ Si-BiCMOS process. The VGDA exhibits a dynamic gain control range of 34 dB with the control voltage range from 0 to 2.3 V in 5.15-5.35 GHz band. At 5.15 GHz, maximum gain and attenuation are 10.5 dB and -23.6 dB, respectively. The amplifier also produces a 1-dB gain-compression output power of -3 dBm and output third-order intercept point of 7.5 dBm. Input/output voltage standing wave ratios of the VGDA keep low and constant despite change in the gain-control voltage.