• Title/Summary/Keyword: Output Tracking Control

Search Result 540, Processing Time 0.031 seconds

Inversion-Based Robust Output Tracking of Differentially Flat Nonlinear Systems

  • Joo, Jin-Man;Park, in-Bae;Park, Yoon-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • In this study, we propose a two degree of freedom robust output tracking control method for a class of nonlinear system. We consider hyperbolically nonminimum phase single-input single-output uncertain nonlinear systems. We also consider the case that the nominal input-state equation is differentially flat. Nominal stable state trajectory is obtained in the flat output space via the flat output. Nominal feedforward control input is also computed from the nominal state trajectory. Due to the nature of the method, the generated flat output trajectory and control input are noncausal. Robust feedback control is designed to stabilize the systems around the nominal trajectory. A numerical example is given is given to demonstrate that robust tracking is achieved.

  • PDF

Implementation of a Direct Learning Control Law for the Trajectory Tracking Control of a Robot (로봇의 궤적추종제어를 위한 직접학습 제어법칙의 구현)

  • Kim, Jin-Hyoung;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.694-696
    • /
    • 2000
  • In this paper, the Direct Learning Control is applied to robot's trajectory tracking control to solve the problem that lies in the existing Iterative Learning Control(ILC) and the tracking Performance is analyzed and the better approach is searched using computer simulation and experiments. It is assumed that the Direct Learning Control(DLC) is saved onto memory basically after obtaining control input Profiles for several Periodic output trajectories using the ILC. In case the new output trajectory has special relations with the previous output trajectories, there is an advantage that the desired control input profile can be obtained without iterative executions only using the DLC. The robot's tracking control system is comprised of DSP chip. A/D converter, D/A converter and high-speed pulse counter included in the control board and the performance is examined by carrying out the tracking control for the given output trajectory.

  • PDF

Application of nonlinear control via output redefinition to missile autopilot (출력재정의를 통한 비선형제어 기법의 미사일 오토파일롯 응용)

  • 류진훈;탁민제
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1496-1499
    • /
    • 1996
  • A nonlinear tracking control technique developed for the control of nonlinear systems has been applied to the autopilot design of missile system. The difficulties in the application of inversion based control methods such as input-output feedback linearization and sliding mode control due to nonminimum phase characteristics are discussed. To avoid the stability problem associated with unstable zero dynamics, the input-output feedback linearization is applied with output-redefinition method to normal acceleration control. The output-redefinition method gives an indirect way to apply the nonlinear controls to nonminimum phase plants by redefining the plant output such that the tracking control of the modified output ensures the asymptotic tracking of the original output. The numerical simulation shows satisfactory results both for nominal and for slightly perturbed missile systems adopting the sliding mode control technique. However, the robustness problem in this method is briefly investigated and verified with the simulation.

  • PDF

GLOBAL ASYMPTOTIC OUTPUT TRACKING FOR A CLASS OF NONLINEAR SYSTEMS

  • Alimhan, Keylan;Inaba, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.557-560
    • /
    • 2005
  • This paper considers a global asymptotic output tracking problem with a prescribed constant reference signal for a class of single-input and single output-output nonlinear systems. It is shown that under some mild conditions on such a system there is a smooth output feedback achieving global asymptotic output tracking and such a smooth output controller is explicitly constructed by a new design method proposed. The usefulness of our result is illustrated by a numerical example.

  • PDF

Adaptive Actuator Failure Compensation Designs for Linear Systems

  • Chen, Shuhao;Tao, Gang;Joshi, Suresh M.
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2004
  • This paper surveys some existing direct adaptive feedback control schemes for linear time-invariant systems with actuator failures characterized by the failure pattern that some inputs are stuck at some unknown fixed or varying values at unknown time instants, and applications of those schemes to aircraft flight control system models. Controller structures, plant-model matching conditions, and adaptive laws to update controller parameters are investigated for the following cases for continuous-time systems: state tracking using state feed-back, output tracking using state feedback, and output tracking using output feedback. In addition, a discrete-time output tracking design using output feedback is presented. Robustness of this design with respect to unmodeled dynamics and disturbances is addressed using a modified robust adaptive law.

Robust Output-Tracking Control of Uncertain Takagi-Sugeno Fuzzy Systems

  • 이호재;박진배;정근호;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.315-318
    • /
    • 2003
  • A systematic output-tracking control design technique for robust control of Takagi-Sugeno (T-S) fuzzy systems with norm-bounded uncertainties is developed. The uncertain T-S fuzzy system is first represented as a set of uncertain local linear systems. The tracking problem is then converted into the stabilization problem for a set of uncertain local linear systems thereby leading to a more feasible controller design procedure. A sufficient condition for robust asymptotic output tracking is derived in terms of a set of linear matrix inequalities (LMIs). A stability condition on the traversing time-instances is also established. The output tracking control simulation for a flexible-joint robot-arm model is demonstrated, to convincingly show the effectiveness of the proposed system modeling and controller design method.

  • PDF

Robust Switching-Type Fuzzy-Model-Based Output Tracker

  • Lee, Ho-Jae;Park, Jin-Bae;Joo, Young-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.411-418
    • /
    • 2005
  • This paper discusses an output-tracking control design method for Takagi-Sugeno fuzzy systems with parametric uncertainties. We first represent the concerned system as a set of uncertain linear systems. The tracking problem is then converted into a stabilization problem thereby leading to a more feasible control design procedure. A sufficient condition for robust practical output tracking is derived in terms of a set of linear matrix inequalities. A numerical example for a flexible-joint robot-arm model has been demonstrated, to convincingly show effectiveness of the proposed system modeling and control design.

On Output Feedback Tracking Control of Robot Manipulators with Bounded Torque Input

  • Moreno-Valenzuela, Javier;Santibanez, Victor;Campa, Ricardo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.76-85
    • /
    • 2008
  • Motivated by the fact that in many industrial robots the joint velocity is estimated from position measurements, the trajectory tracking of robot manipulators with output feedback is addressed in this paper. The fact that robot actuators have limited power is also taken into account. Let us notice that few solutions for the torque-bounded output feedback tracking control problem have been proposed. In this paper we contribute to this subject by presenting a theoretical reexamination of a known controller, by using the theory of singularly perturbed systems. Motivated by this analysis, a redesign of that controller is introduced. As another contribution, we present an experimental evaluation in a two degrees-of-freedom revolute-joint direct-drive robot, confirming the practical feasibility of the proposed approach.

Trajectory Tracking Control of A Pneumatic Cylinder Using An Input-Output Linearization Method (입.출력 선형화 기법을 이용한 공기압 실린더의 궤적추적 제어)

  • Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.49-56
    • /
    • 2002
  • This study suggests a trajectory tracking controller composed of an input output linearization compensator and a linear controller. The input output linearization compensator is derived from the nonlinear equations of a pneumatic control system and it algebraically transforms a nonlinear system dynamics into a linear one, so that input output characteristics of the control system is linearized regardless of the variation of the operating point and linear control techniques can be applied. The results of nonlinear simulations show that the proposed controller tracks the given trajectories more accurately than a state feedback controller does.

  • PDF

Adaptive Robust Output Tracking for Nonlinear MMO Systems

  • Im, Kyu-Mann
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.177-182
    • /
    • 2003
  • The robust output tracking control problem of general nonlinear MIMO systems is discussed. The robustness against parameter uncertainties is considered. In this paper, we proposed the robust output tracking control scheme for a class of MIMO nonlinear dynamical systems using output feedback linearization method. The presented control scheme is based on the VSS. We assume that the nonlinear dynamical system is minimum phase, the relative degree of the system is r$_{1}$+r$_{2}$+…r$_{m}$$\leq$ n and zero dynamics is stable. It is shown that the outputs of the closed-loop system asymptotically track given output trajectories despite the uncertainties while maintaining the boundedness of all signals inside the loop. And we verified that the proposed control scheme is then applied to the control of a two degree of freedom (DOF) robotic manipulator with payload.d.

  • PDF