• Title/Summary/Keyword: Outer loop

Search Result 242, Processing Time 0.021 seconds

Design of a Multiphase Clock Generator for High Speed Serial Link (고속 시리얼 링크를 위한 다중 위상 클럭 발생기의 설계)

  • 조경선;김수원
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.277-280
    • /
    • 2001
  • The proposed clock generator lowers the operating frequency in a system core though it keeps data bandwidth high because it has a multiphase clocking architecture. Moreover. it has a dual loop which is comprised of an inner analog phase generation loop and outer digital phase control loop. It has both advantages of DLL's wide operating range and DLL's low jitter The proposed design has been demonstrated in terms of the concept and Hspice simulation. All circuits were designed using a 0.25${\mu}{\textrm}{m}$ CMOS process and simulated with 2.5 V power supply.

  • PDF

Robust Control System of PMSM using Dual Adaptive Control Loop (이중 적응제어 루프를 이용한 영구자석 동기 전동기의 강인성 제어 시스템)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Yoon, Myoung-Kyun;Kim, Cheol-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.175-178
    • /
    • 1991
  • The drive system of servo motor is requested to have robustness of disturbance and parameter variation. However, the dynamics of PMSM drive change significantly by forced disturbance and parameter variation. Moreover, the state error caused by them should be suppressed completely and rapidly. In this paper, the vector-control system of PMSM using dual adaptive control loop is investigated. In the proposed system, linear adaptive control loop rapidly recovers the state error caused by both disturbance and parameter variation. In the dual adaptive control loop, the inner loop reduces the system sensitivity of parameter variation and disturbance, and the outer loop suppresses the state error caused by them completely. The proposed servo system is verified through a computer simulations and experimental results.

  • PDF

Two-loop Hysteretic Control of $3^{rd}$ Order Buck Converter

  • Veerachary, M.;Sharma, Deepen
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.310-317
    • /
    • 2007
  • In this paper, an analysis and hysteretic controller design of a $3^{rd}$ order buck converter is presented. The proposed hysteretic controller consists of an inner current-loop, just like the conventional cascade control scheme, and an outer voltage-loop for load voltage regulation. Although it is possible to include an inner current loop from different branches of the converter, from the feasibility and operational point of view, the load side capacitor current would be the better choice. The addition of an inner current-loop improves the dynamic performance of the converter while preserving the robustness of the hysteretic control. The controller formulation and closed-loop converter performance analysis are validated through computer simulations. Few experimental results of the proposed converter are given and compared with the buck converter.

The Mechanical Characteristic Analysis and Improvement of Precision Position Control System with AC Servo Motor and Ball Screw (AC Servo Motor와 Ball screw를 이용한 정밀 위치제어시스템의 기계적 특성 분석 및 개선)

  • Ko, Su-Chang;Jin, Kyoung-Bog
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.31-36
    • /
    • 2007
  • Effect of coulomb friction and backlash on the single loop position control has been studied for the precision position control. We have showed the limit cycle on the single loop system which used a ball screw that had the backlash. Also, we have made an inner loop with a classical velocity and torque controller which was forcing the current of d axis to be zero by using a permanent-magnet synchronous motor and composed the outer loop with linear encoder for sensing a position of the loader. Also, we have used least squares fit(LSF) observer for reducing noise when we got velocity from position outputs. We have shown a good result by using the dual loop through simulation and experiment.

  • PDF

Multi-Mode Wireless Power Transfer System with Dual Loop Structure (이중루프 구조를 갖는 다중모드 무선전력전송 시스템)

  • Han, Minseok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.578-583
    • /
    • 2016
  • In this paper, we propose a multi-mode wireless power transfer (WPT) system with a dual loop structure. The proposed multi-mode WPT system consist of outer loop module which can operate at two different frequency bands including 6.78 MHz magnetic resonance WPT mode and 13.56 MHz near field communication (NFC) mode and inner loop module connected with outer loop which can operate at two different frequency bands including WPC mode and PMA mode based on inductive coupling standards. In order to be able to embed this system into smartphone battery back cover, the electrical designs are optimized and then the size was fixed $45{\times}90{\times}0.35mm3$ (including ferrite sheet) which is the same commercial smartphone. The proposed multi-mode WPT module can cover WPC and PMA mode based on inductive coupling. Moreover, it has more than 20 dB return loss characteristics at two different frequency bands including 6.78 MHz and 13.56 MHz, and shows more than 70 % transfer efficiency between resonant coils at 6.78 MHz in magnetic resonant charging environment.

Stability Analysis and Improvement of the Capacitor Current Active Damping of the LCL Filters in Grid-Connected Applications

  • Xu, Jinming;Xie, Shaojun;Zhang, Binfeng
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1565-1577
    • /
    • 2016
  • For grid-connected LCL-filtered inverters, dual-loop current control with an inner-loop active damping (AD) based on capacitor current feedback is generally used for the sake of current quality. However, existing studies on capacitor current feedback AD with a control delay do not reveal the mathematical relation among the dual-loop stability, capacitor current feedback factor, delay time and LCL parameters. The robustness was not investigated through mathematical derivations. Thus, this paper aims to provide a systematic study of dual-loop current control in a digitally-controlled inverter. At first, the stable region of the inner-loop AD is derived. Then, the dual-loop stability and robustness are analyzed by mathematical derivations when the inner-loop AD is stable and unstable. Robust design principles for the inner-loop AD feedback factor and the outer-loop current controller are derived. Most importantly, ensuring the stability of the inner-loop AD is critical for achieving high robustness against a large grid impedance. Then, several improved approaches are proposed and synthesized. The limitations and benefits of all of the approaches are identified to help engineers apply capacitor current feedback AD in practice.

Design of Single Loop Output Voltage Controller for 3 Phase PWM Inverterl (3상 PWM 인버터의 단일루프 전압제어기 설계)

  • 곽철훈;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.561-568
    • /
    • 2003
  • There arc two ways in the output voltage control method in PWM inverters. One Is double loop voltage control composed of inner current control loop and outer voltage control loop.'rho other is single loop voltage control method composed of voltage control loop only. It's characteristics shows lower performance in case of high output impedance than double loop voltage control. However, in case of low output impedance, it shows good control performance in all load ranges than double loop voltage control. In this paper, the rule and the gain of single loop voltage control have been developed analytically and these were verified through computer simulation and experiment.

Active Disturbance Rejection Control for Single-Phase PWM Rectifier with Current Decoupling Control

  • Yan, Ruitao;Wang, Ping
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2354-2363
    • /
    • 2018
  • This paper proposed a novel double closed control strategy for single-phase voltage source pulse width modulation (PWM) rectifier based on active disturbance rejection control (ADRC) and dq current decoupling control. First, the mathematical model of the single-phase PWM rectifier in the d-q axis synchronous rotating reference frame is established by constructing a virtual component using a second-order generalized integrator (SOGI). Then, the mathematical model is simplified according to the active power conservation, and the first-order equation of single-phase PWM rectifier voltage outer loop is acquired. A linear auto-disturbance rejection controller is used to design the voltage outer loop according to the first-order equation. Finally, the proposed control strategy and the traditional PI control are compared and verified by simulation and physical experiments. Both simulation and experimental results confirm that the proposed control strategy has excellent dynamic performance and strong rejection ability to disturbances.

Displacement-Type Web Position Control of Cold Mills Using QFT (QFT를 이용한 냉간 압연시스템의 변위유도형 웹 위치제어)

  • Jeong, Jae-Hyo;Kim, Jong-Sik;Park, Jeon-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.147-155
    • /
    • 2001
  • A new displacement type web position control system for cold mills using QFT is presented. The control system features an inner-outer cascaded system in which the inner loop provides the position tracking control of the hydraulic system and the outer loop provides the position regulation control of the web. By the sensitivity analysis and computer simulation, it is verified that the proposed control system has better robust stability and performance than the conventional control system.

  • PDF