• Title/Summary/Keyword: Out-pile Test

Search Result 279, Processing Time 0.025 seconds

Analysis on inclined or rounded tip piles using 3D printing technology and FE analysis

  • Jaehong Kim;Junyoung Ko;Dohyun Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.91-99
    • /
    • 2023
  • To test the effect of various pile tip shape series of model scale loading tests were carried out on test piles with special pile tips. Special pile tips were made using the 3D printer and were attached to the bottom end of the test pile for loading tests. The pile tips were made to have 30°, 45°, 60° inclined tips, as well as a rounded tip. The main objective of the test was to observe the effect of various pile tip shapes on settlement and penetrability of the pile. Moreover, a numerical model simulating the pile loading test carried out in this study was established and verified based on the loading test results. From this, the stress concentration around the pile tip was investigated. This will allow us to analyze the decrease of stress concentration around the pile tip which is the main cause of the pile tip damage during pile installation. However, modifying the pile tip shape will eventually increase the settlement of the pile. By estimating the degree of increase in pile settlement, the viability and the efficiency of the pile shape modification was judged. In addition, case studies on the effect of different pile tip shape and ground conditions on pile settlement and stress dispersion was conducted.

A study on case analysis for loading capacity standard establishment of bi-directional pile load test (BD PLT) (양방향말뚝재하시험의 재하용량 기준 설정을 위한 사례분석 연구)

  • Choi, Yong-Kyu;Seo, Jeong-Hae;Kim, Sang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.377-384
    • /
    • 2008
  • In the bi-directional pile load test (BD PLT) for pile load test of Mega foundation, loading capacity specification were not specified exactly. Therefore there are so many confusions and variations of maximum 2 times in loading capacity are come out. In this study, specifications of bi-directional pile load test (BD PLT) were considered. Based on cases of the bi-directional pile load test performed in domestic areas, maximum equivalent test load, test load increasing ratio and sufficiency ratio of design load were analyzed. It can be known that the loading capacity specification of bi-directional pile load test must be defined as 1-directional test load that is established as more than 2 times of design load.

  • PDF

A Study on Behavior of Horizontal Pull-out Loaded suction pile in Sands (사질토지반에서 수평인발하중을 받는 석션말뚝에 관한 연구)

  • Kim, Jin-Bok;Park, Joung-Un;Jin, Hong-Min;Kwon, Oh-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1120-1131
    • /
    • 2010
  • In this thesis the model tests were performed to the horizontal pull-out characteristics of a suction pile subjected to a pull in sands. For this model tests, soil conditions ($D_r$=65), three pile diameters (D=100, 150, 200mm) and five loading points (h/L=0, 0.25, 0.5, 0.75, 1) were changed. And the experimental results were also compared with those by the theoretical methods. The results by the experimental and theoretical analysis are as follows. The ultimate horizontal pull-out resistance by the model test increased as the loading point (h/L) moved downwards from the pile top, and the maximum value reached at the h/L=0.75. The theoretical ultimate horizontal pull-out resistance by Broms(1964) and Hong(1984) agreed well with that by the model test at h/L=0 and 0.25, but their results overestimated the experimental result at lower part of pile and the differences between the theoretical and experimental results were of great. While the horizontal loading applied at the upper part of pile, the pile moved to the horizontal direction with rotating clockwise. As the loading point moved downwards from the pile top, the rotating angle of pile was smaller.

  • PDF

Load-displacement characteristics of belled tension piles embeded in cohesionless soils (사질토지반에 근입된 벨타입 인발말뚝의 하중-변위 특성)

  • Hong, Won-Pyo;Choi, Yong-Sung;Lim, Dae-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1114-1119
    • /
    • 2010
  • Pile foundations have been used for upholding superstructure's loads. The researches on pile foundations subjected to compressive forces or horizontal loads have been actively carried out. However, recently, pile foundations, which are subjected to pull-out forces, are getting increased. The study on the pull-out resistance of piles becomes to be important. In addition, it is expected that belled piles will be used more and more, since the belled piles are effective to resist the pull-out forces. But there is still a lack of research on pull-out resistance of belled piles. Therefore, in order to investigate the resisting effect against pull-out of belled piles which is embedded in cohesionless soil. a series of pull-out test is performed on belled piles in field. Especially, the relation between load and displacement is analyzed through the pull-out test.

  • PDF

The Analysis of Pile Bridge Abutments on Soft Clay for Loading from Lateral Soil Movement (연약지반상에 측방유동을 받는 교대말뚝기초의 거동분석)

  • Lee, Song;Kang, Dae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.149-154
    • /
    • 2004
  • Pile Bridge Abutments constructed on a soft base are affected by a lateral flow. Laterl flow pressure acting on Pile is very difficult to calculate because of, interation of ground and Pile. So, it is different to estimate displacement of Pile Bridge Abutments. This paper studied about possibility of the displacement estimation of Pile Bridge Abutments by using the equivalent sheet pile wall theory that was Randolph proposed in 1981. Analysis program through using the SAGE CRISP that is FEM program. Analysis data used Centrifuge test results of Springman(1991), Bransby(1997) and Ellis(1997)'s paper. In conclusion, maxium displacement that is carried out by centrifuge test and numerical analysis has occured at the head of pile, as well as Maximum displacement of pile is closely similar. But the moment acting on pile of numerical analysis is under estimated compare to the centrifuge test. Through the comparative study, it is found that displacement estimation by equivalent sheet pile wall is in relatively good agreement with the results of centrifuge test.

Compatibility test of a non-instrumented irradiation test capsule for the HANARO test reactor (환형소결체 하나로 조사시험용 무계장 캡슐의 연구로 설치 적합성시험)

  • Lee, Kang-Hee;Kim, Dae-Ho;Chun, Tae-Hyun;Kim, Hyung-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.226-229
    • /
    • 2008
  • To investigate an in-pile behavior of the newly developed DUO fuel pellet, the irradiation test will be carried out in the domestic test reactor. Irradiation test capsule for the HANARO reactor, which is a specially designed equipment used for material, irradiation and creep test, must satisfy the operational requirement on the hydraulic characteristics and structural integrity. In this study, a pressure drop, a flow-induced vibration and a short-term endurance test for the newly developed non-instrumented test capsule were carried out using FIVPET as a out-pile evaluation test. The test results show that the new test rig satisfy the HANARO operational requirement with sufficient margin.

  • PDF

Preliminary Study for the Reliability Assurance on Results and Procedure of the Out-pile Mechanical Characterization Test for a Fuel Assembly; Lateral Vibration Test(I) (핵연료 집합체 노외성능시험의 절차와 결과에 대한 신뢰성확보를 위한 예비고찰; 횡방향 진동특성시험(I))

  • Lee, Kang-Hee;Yoon, Kyung-Ho;Kim, Hyung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1854-1858
    • /
    • 2007
  • The reliability assurance with respect to the test procedure and results of the out-pile mechanical performance test for the nuclear fuel assembly is an essential task to assure the test quality and to get a permission for fuel loading into the commercial reactor core. For the case of vibration test, which is carried out to obtain basic dynamic characteristics of the fuel assembly, proper management and appropriate calibration of instruments and devices used in the test, various efforts to minimize the possible error during the test and signal acquisition process are needed. Additionally, the deep understanding both of the theoretical assumption and simplification cation for the signal processing/modal analysis and of the functions of the devices used in the test were highly required. Finally, to verify the test result to represent the accurate natural characteristics of the structure, the proper correlation analysis between the theoretical and experimental method has to be carried out. In this study, the overall procedure and result of lateral vibration test for the fuel assembly's mechanical characterization were briefly introduced. A series of measures to assure and improve the reliability of the vibration test were discussed.

  • PDF

A case study on the evaluation of pile damage during driving by PDA testing. (PDA 시험을 이용한 말뚝손상 판단에 관한 사례 연구)

  • 송명준;박영호;이영남
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.334-341
    • /
    • 2002
  • Nowadays, owing to the development of analysis techniques for PDA test, we can evaluate the serious damage of pile during driving in site. In this study, we checked the damage of pile by pulling it out after evaluation of the pile damage during driving by PDA testing. After that, almost damaged pile was checked and the outline depth of damage could be verified. To increase the quality of driven pile, we have to increase the number of PDA testing for drivability analysis with checking the damage especially for preliminary pile driving and dynamic load test for checking the bearing capacity and consider the application of driving by energy monitoring.

  • PDF

INVESTIGATION OF THE PILE MOVEMENT DUE TO TUNNELLING BY MODEL TEST AND NUMERICAL ANALYSIS

  • Lee, Yong-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.104-110
    • /
    • 2010
  • In this study, a series of two-dimensional model test and numerical analysis was carried out to investigate the pile movement due to tunnelling in soft ground. The model test consists of 21 cases according to locations of the pile tip over the centre position of model tunnel. To identify both the pile and ground movements a close-range photogrammetric technique was adopted in the model test. The results from the model test were compared to the two-dimensional finite element analysis using the CRISP program. It was found that the rotation point on the pile was significantly affected by factors such as the offset distance from the model tunnel and the volume loss that occurred during the tunnelling operation.

  • PDF

Evaluation of Skin Friction Using Tensile Load Testing of CPR Piles (CPR 말뚝의 인발재하시험을 통한 주면마찰력 평가)

  • Ko, Chin-Surk;Kim, Jung-Han;Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.59-69
    • /
    • 2020
  • Pull-out load tests were performed on a CPR (Compaction grouting compound Pile with Reinforce) test pile, with skin friction being evaluated by the yield load and allowable bearing capacity after analyzing load-displacement curves and load-settlement curves. Results of the CPR test piles analyzed from the load-displacement curves show that the yield load and allowable bearing capacity of the large-diameter CPR test pile were about 1.4 times larger than that of the small-diameter pile. Results of the load-settlement curves reveal that the allowable bearing capacity of the CPR test pile with diameter of D500 was 1.2~2.1 times greater than that of the pile with diameter of D400. However, the allowable bearing capacity calculated using Fuller's analysis differed substantially from that determined using the P (Pull-out load) - S (Settlement) and log P - log S curves. Therefore, calculation of the allowable bearing capacity using Fuller's analysis is shown to be inappropriate.