• Title/Summary/Keyword: Osmolarity

Search Result 103, Processing Time 0.024 seconds

Molecular Analysis of Salmonella Enterotoxin Gene Expression

  • Lim, Sang-Yong;Seo, Ho-Seong;Yoon, Hyun-Jin;Choi, Sang-Ho;Heu, Sung-Gi;Ryu, Sang-Ryeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.598-606
    • /
    • 2003
  • Salmonella encodes an enterotoxin (Stn) which possesses biological activity similar to the cholera toxin. Stn contributes significantly to the overall virulence of S. typhimurium in a murine model. The production of Stn is enhanced in a high-osmolarity medium and by contact with epithelial cells. In the present study, the in vitro and in vivo transcriptional regulations of the sin promoter revealed two promoters, P1 and P2. The P1 promoter identified by a primer extension analysis of stn mRNA exhibited a switching mechanism in vivo. Depending on the growth stage, transcription was initiated from different start sites termed $P1_S\;and\;P1_E$. $P1_S$, recognized by RNA polymerase containing ${\sigma}^S(E{\sigma}^S),\;and\;P1_E$, recognized by $E{\sigma}^70$, were activated during the stationary and exponential phases, respectively, while $P1_S\;and\;P1_E$ were both negatively regulated by CRPㆍcAMP and H-NS. Results revealed that $P1_S$ was the responsible promoter activated under a high osmolarity and low pH. The P2 promoter was identified 45 nucleotides downstream from $P1_E$ and negatively controlled by CRPㆍcAMP in vitro. No P2 activity was detected in vivo. The regulation of stn expression monitored using a Pstn::egfp fusion indicated that $E{\sigma}^S$ was required for the induction of stn and various factors were involved in stn regulation inside animal cells.

Pharmacokinetic profiles of levofloxacin after intravenous, intramuscular and subcutaneous administration to rabbits (Oryctolagus cuniculus)

  • Sitovs, Andrejs;Voiko, Laura;Kustovs, Dmitrijs;Kovalcuka, Liga;Bandere, Dace;Purvina, Santa;Giorgi, Mario
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.32.1-32.13
    • /
    • 2020
  • Levofloxacin pharmacokinetic profiles were evaluated in 6 healthy female rabbits after intravenous (I/V), intramuscular (I/M), or subcutaneous (S/C) administration routes at a single dose of 5 mg/kg in a 3 × 3 cross-over study. Plasma levofloxacin concentrations were detected using a validated Ultra Performance Liquid Chromatography method with a fluorescence detector. Levofloxacin was quantifiable up to 10 h post-drug administration. Mean AUC0-last values of 9.03 ± 2.66, 9.07 ± 1.80, and 9.28 ± 1.56 mg/h*L were obtained via I/V, I/M, and S/C, respectively. Plasma clearance was 0.6 mL/g*h after I/V administration. Peak plasma concentrations using the I/M and S/C routes were 3.33 ± 0.39 and 2.91 ± 0.56 ㎍/mL. Bioavailability values, after extravascular administration were complete, - 105% ± 27% (I/M) and 118% ± 40% (S/C). Average extraction ratio of levofloxacin after I/V administration was 7%. Additionally, levofloxacin administration effects on tear production and osmolarity were evaluated. Tear osmolarity decreased within 48 h post-drug administration. All 3 levofloxacin administration routes produced similar pharmacokinetic profiles. The studied dose is unlikely to be effective in rabbits; however, it was calculated that a daily dose of 29 mg/kg appears effective for I/V administration for pathogens with MIC < 0.5 ㎍/mL.

Motility Contrast Imaging for Drug Screening Applications

  • Jeong, Kwan
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.382-389
    • /
    • 2015
  • Motility contrast imaging is a coherence-domain imaging technique that uses cellular motility as a fully endogenous imaging contrast agent. Motility is measured inside tissue using a digital holographic coherence gate that extracts dynamic speckle from fixed depths. The dynamic speckle arises from the normal organelle motion inside cells, and from the movement of the cellular membranes driven by the cytoskeleton. It measures cellular activity and the effects of temperature and osmolarity. Motion is sensitive to cytoskeletal drugs, such as the antimitotic drugs used for cancer chemotherapy, and the effects of drug combinations also can be monitored. Motility contrast imaging is a potential tissue-based assay platform for highthroughput screening of pharmaceuticals.

담배세포배양을 통한 Human Granulocyte-Macrophage Colony Stimulating Factor(hGM-CSF)의 생산

  • Kim, Nan-Seon;Hong, Sin-Yeong;Lee, Jae-Hwa;Lee, Mi-Ae;Gwon, Tae-Ho;Jang, Yong-Seok;Yang, Mun-Sik
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.391-392
    • /
    • 2000
  • Tobacco cells transformed with hGM-CSF gene produced $162\;{\mu}g/L$ of hGM-CSF, a valuable therapeutic protein in seven days after inoculation. The protein concentration decreased after the maximum point. It is evidenced that the environment of cell culture was inappropriate for the stability of the protein(e.g., low osmolarity which can cause cell lysis).

  • PDF

산란계 사료에 비태인의 수준별 급여가 하절기 생산성 및 계란의 품질에 미치는 영향

  • Ryu, Myeong-Seon;Shin, Won-Jip;Kim, Sang-Ho;Ryu, Gyeong-Seon
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2001.11a
    • /
    • pp.49-51
    • /
    • 2001
  • Betaine functions as an osmoregulators in the cells and its inclusion can spare the choline, carcass fat reduction. Thus, two hundred eighty eight of seventy eight weeks old laying hens were fed with 0, 500, 1,000, 2,000 ppm betaine addition during the environmentally high temperature stress. Basal diets contained 16% CP and 2,800 ME. Egg production, feed intake, feed conversion were examined for eight weeks. Egg qualities, liver betaine, blood osmolarity, AntiDiuretic Hormone(ADH) were measured at the end experiment. Egg production of hens fed 500, 2,000 ppm dietary betaine and showed significance between control and 2,000 ppm betaine treatment(P<0.05). ADH of blood sera tended to increase as dietary supplemental betaine increased. The results of this experiments indicated that dietary supplemental betaine was able to improve the performance, eggshell breaking strength, liver betaine in this experiment.

  • PDF

Cyclodextrin Glucanotransferase의 고정화와 당전이 스테비오사이드 제조에 관련된 반응 특성

  • In, Man-Jin;Kim, Dong Chung;Chae, Hee Jeong;Choi, Kyung Seok;Kim, Min-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.3
    • /
    • pp.305-310
    • /
    • 1997
  • For the continuous production of transglucosylated steviosides, cyclodextrin glucanotransferase from Bacillus macerans was immobilized onto Diaion HPA 75 (styrene-divinylbenzene resin) that was screened from ion exchange resins, synthetic adsorbents and chitosan derivatives. The parameters influencing enzyme immobilization were examined in order to maximize the activity of immobilized enzyme. The optimum conditions for immobilization turned out to be: contact time 2 hr at 30$circ$C, pH 6$sim$9, and enzyme loading 20mg protein/g resin at 4.4 Os/Kg as osmolarity. Competing with other molecules having low molecular weight, enzyme was immobilized reversibly. The activity of immobilized enzyme was as high as 180U/g resin when the diafiltrated solution of stock enzyme was used. The optimum conditions for transglucosylation were as follows: pH 6.0, temperature 50$circ$C, 30% substrate solution composed of 15% stevioside mixture and 15% dextrin of which value of dextrose equivalent was about 9.0.

  • PDF

How to Get Well-Preserved Samples for Transmission Electron Microscopy

  • Park, Chang-Hyun;Kim, Hyun-Wook;Rhyu, Im Joo;Uhm, Chang-Sub
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.188-192
    • /
    • 2016
  • Proper sample preparation prior to microscopy is necessary for maintaining the components of tissues in a state as close to a living state as possible. For optimal preservation of biological samples, the sampling conditions are as important as the fixation itself. Various factors influence the selection and fixation efficiencies of a fixative, including sample size, osmolarity, pH, penetration rate and depth, fixative temperature, fixation time, fixative concentration, fixative amount, and retention time. Therefore, several factors for selecting and administering fixation procedures are evaluated pertaining to optimal sample preparation for transmission electron microscopy.

Genetic and Environmental Control of Salmonella Invasion

  • Altier, Craig
    • Journal of Microbiology
    • /
    • v.43 no.spc1
    • /
    • pp.85-92
    • /
    • 2005
  • An early step in the pathogenesis of non-typhoidal Salmonella species is the ability to penetrate the intestinal epithelial monolayer. This process of cell invasion requires the production and transport of secreted effector proteins by a type III secretion apparatus encoded in Salmonella pathogenicity island I (SPI-1). The control of invasion involves a number of genetic regulators and environmental stimuli in complex relationships. SPI-1 itself encodes several transcriptional regulators (HilA, HilD, HilC, and InvF) with overlapping sets of target genes. These regulators are, in turn, controlled by both positive and regulators outside SPI-1, including the two-component regulators BarA/SirA and PhoP/Q, and the csr post-transcriptional control system. Additionally, several environmental conditions are known to regulate invasion, including pH, osmolarity, oxygen tension, bile, $Mg^{2+}$ concentration, and short chain fatty acids. This review will discuss the current understanding of invasion control, with emphasis on the interaction of environmental factors with genetic regulators that leads to productive infection.

Osmotic-inducible Gene Expression using MudJ(Km.lac) Operon Fusion in Salmonella typhimurium (Salmonella typhimurium에서 MudJ(Km.lac) 오페론 융합을 이용한 삼투유도유전자의 발현)

  • 주성관;우영대;허연주;안정선;박용근
    • Korean Journal of Microbiology
    • /
    • v.29 no.4
    • /
    • pp.215-220
    • /
    • 1991
  • MudJ(Km.lac) operon fusions were used in the identification of osmotic-inducible genetic(osi) loci in Salmonella typhimurium. Expression of osi::lacZ(osi5001, 5027) genes were dramatically induced 39-189 fold when the osmolarity was increased. Seven osm::lacZ genes were constituvely expressed under both low and high osmotic strength. The osi5001::lacZ fusion strains showed the enhanced osmotolerance and the reduced expression of the osi5001::lacZ in the presence of 1mM proline or betaine as osmoprotectants. Four osmotic inducible genetic loci were mapped into 36 (YK531), 44 (YK504), 57 (YK501) and 84 (YK528) map unit by testing the cotransduction frequency.

  • PDF

Salty taste: the paradoxical taste

  • In-Sun, Choi;Kyung-Nyun, Kim
    • International Journal of Oral Biology
    • /
    • v.47 no.4
    • /
    • pp.49-54
    • /
    • 2022
  • Taste is a basic sensation to get attracted toward nutritious foods or avoid possible harmful substances. The basic taste qualities in humans consist of sweet, bitter, umami, salty, and sour. Basically, sweet and umami tastes make food attractive, whereas bitter and sour tastes make it avoidable. Salty taste comprises basic salty and high salt taste. The basic salty taste is known as amiloride-sensitive salty taste, which is inhibited by amiloride, but the high salt taste is not sensitive to amiloride. Moreover, high salt taste can also cause avoidance behavior in human beings. Sodium, one of the most important cations in the body fluids of vertebrates, controls the volume of total body fluids and is a risk factor for cardiovascular diseases, such as hypertension. The concentration of sodium in body fluids must be under delicate control. A distinction between the salty taste and high salt taste would be a contributing mechanism to control the volume and/or osmolarity of body fluids.