• Title/Summary/Keyword: Oscillation Control

Search Result 499, Processing Time 0.025 seconds

NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO (공동의 폭 변화에 따른 3차원 초음속 공동 유동연구)

  • Woo, C.H.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.62-66
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation, reattachment, shock waves and expansion waves. The general cavity flow phenomena includes the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions. The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio (L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyzed and compared with the results of Rossiter's Eq.

Modeling of the Mechanical Drivetrain of an Electric Vehicle for Investigation of Torsional Oscillation Characteristics (전기자동차 기계적 구동계의 모델링 및 비틀림 진동특성 분석)

  • Kim, Ho-Gi;Oh, Joong-Seok;Kim, Sam-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.866-872
    • /
    • 2008
  • Torsional oscillations of the mechanical drivetrain in electric vehicles are generated under rapid driving conditions. These lead to an uncomfortable jerking of the vehicle and to an increased stress of the mechanical components. To analyze this phenomenon, a drivetrain model is constructed with lumped parameters. The model parameters are identified by geometrical design data and experimental tests. The proposed model is validated by simulation and experimental tests in the time and the frequency domains. As a result, the torsional oscillations are observed at 7Hz of a low damped natural frequency. Also, the analysis of the effect of the parameter variations on the oscillations shows that the oscillation characteristic is mainly dependent on the rotor inertia, and the stiffness of the mounting of the drive aggregate and the driveshaft. The results will be utilized on the basis of the design of an electric drivetrain and an active control of drivetrain oscillations.

An Analysis on Combustion Instability in Solid Rocket Motor of 4 Slotted Tube Grain (4 Slotted Tube형 고체 추진기관의 연소불안정 거동 현상 분석)

  • Cho, Ki-Hong;Kim, Eui-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.48-56
    • /
    • 2011
  • A Possibility of combustion instability on longitudinal mode has a high level at large scale of L/D. Solid propellant has a metal particle and a grain of control to pressure oscillation. Solid rocket motor in slotted-tube grain controls pressure oscillation of longitudinal mode. Slotted-tube grain restrains longitudinal 1st pressure oscillation. But cavity volume of aft. insulation ablation amplifies 2nd pressure o scillation by vortext shedding. A study has suppressed combustion instability and vortex shedding by modified 4 slotted tube solid rocket motor design.

Design and Manufacture of Multi-layer VCO by LTCC (저온 동시소성 세라믹을 이용한 적층형 VCO의 설계 및 제작)

  • Park, Gwi-Nam;Lee, Heon-Yong;Kim, Ji-Gyun;Song, Jin-Hyung;Rhie, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.291-294
    • /
    • 2003
  • The circuit substrate was made from the Low Temperature Cofired Ceramics(LTCC) that a $\varepsilon_\gamma$ was 7.8. Accumulated Varactor and the low noise transistor which were a Surface Mount Device-type element on LTCC substrate. Let passive element composed R, L, C with strip-line of three dimension in the multilayer substrate circuit inside, and one structure accumulate band-pass filter, resonator, a bias line, a matching circuit, and made it. Used Screen-Print process, and made Strip-line resonator. A design produced and multilayer-type VCO(Voltage Controlled Oscillator), and recognized a characteristic with the Spectrum Analyzer which was measurement equipment. Measured multilayer structure VCO is oscillation frequency 1292[MHz], oscillation output -28.38[dBm], hamonics characteristic -45[dBc] in control voltage 1.5[V], A phase noise is -68.22[dBc/Hz] in 100 KHz offset frequency. The oscillation frequency variable characteristic showed 30[MHz/V] characteristic, and consumption electric current is approximately 10[mA].

  • PDF

Performance Improvement Strategy for Parallel-operated Virtual Synchronous Generators in Microgrids

  • Zhang, Hui;Zhang, Ruixue;Sun, Kai;Feng, Wei
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.580-590
    • /
    • 2019
  • The concept of virtual synchronous generators (VSGs) is a valuable means for improving the frequency stability of microgrids (MGs). However, a great virtual inertia in a VSG's controller may cause power oscillation, thereby deteriorating system stability. In this study, a small-signal model of an MG with two paralleled VSGs is established, and a control strategy for maintaining a constant inertial time with an increasing active-frequency droop coefficient (m) is proposed on the basis of a root locus analysis. The power oscillation is suppressed by adjusting virtual synchronous reactance, damping coefficient, and load frequency coefficient under the same inertial time constant. In addition, the dynamic load distribution is sensitive to the controller parameters, especially under the parallel operation of VSGs with different capacities. Therefore, an active power increment method is introduced to improve the precision of active power sharing in dynamic response. Simulation and experimental is used to verify the theoretical analysis findings.

The Role of the Background Meridional Moisture Gradient on the Propagation of the MJO over the Maritime Continent

  • Daehyun Kang;Daehyun Kim;Min-Seop Ahn;Soon-Il An
    • Journal of Climate Change Research
    • /
    • v.34 no.16
    • /
    • pp.6565-6581
    • /
    • 2021
  • This study investigates the role of the background meridional moisture gradient (MMG) on the propagation of the Madden-Julian oscillation (MJO) across the Maritime Continent (MC) region. It is found that the interannual variability of the seasonal mean MMG over the southern MC area is associated with the meridional expansion and contraction of the moist area in the vicinity of the MC. Sea surface temperature anomalies associated with relatively high and low seasonal mean MMG exhibit patterns that resemble those of El Niño-Southern Oscillation. By contrasting the years with anomalously low and high MMG, we show that MJO propagation through the MC is enhanced (suppressed) in years with higher (lower) seasonal mean MMG, although the effect is less robust when MMG anomalies are weak. Column-integrated moisture budget analysis further shows that sufficiently large MMG anomalies affect MJO activity by modulating the meridional advection of the mean moisture via MJO wind anomalies. Our results suggest that the background moisture distribution has a strong control over the propagation characteristics of the MJO in the MC region.

Trajectory control of the flexible manipulator with time-varying arm

  • Yamazaki, Hidetaka;Ono, Toshiro;Park, Chang-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.405-408
    • /
    • 1996
  • Several papers have already been reported on the flexible manipulator with constant arm length. Some of industrial manipulators, however, have sliding joints. It means that the length of their arm or link varies with time. This paper discusses the trajectory contro lof such a manipulator model, and shows some of the experimental results.

  • PDF

Compensation for temperature-level control of tanked water system with time delay

  • Nakamura, Masatoshi;Watanabe, Kiyoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.42-47
    • /
    • 1993
  • Importance of separation of a nonlinear dynamical system into nonlinear static part and linear dynamical part was insisted in designing a controller for the nonlinear system. We further proposed compensation techniques for oscillation of controlled variables caused by system time delay and compensation of steady state errors caused by modelling errors of the systems. The proposed principle of designing procedure and the compensation methods were discussed by applying them for temperature and level control of an actual tanked water system.

  • PDF

Hunting Protection of Synchronous Motor by Field Control (계자제어에 의한 동기전동기의 난조방지)

  • Song Yop Hahn
    • 전기의세계
    • /
    • v.20 no.2
    • /
    • pp.19-26
    • /
    • 1971
  • To proteting hunting of synchronus motor a new one which has two field windings is designed. One is main field winding excited constantly and the other is control field winding excited only during the load of motor changes. The oscillation of the motor is controlled by increasing or decreasing the control field excitation. To determine the optimal field excitation the Pontryagin's minimum principle is applied. Also this paper gives the optimal trajectories of the motor and it's transition time. This motor has some of better properties than the old motor with damper winding. These phroperties are (1) there is no hunting (2) the transient stability is improved (3) transition time is very short.

  • PDF

Attitude Control for Spacecraft by using Genetic Algorithm (유전자알고리즘을 이용한 우주비행체의 자세제어)

  • Heo, H.;Kim, D.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.182-186
    • /
    • 1996
  • Control of flexible spacecraft is investigated. GA(Genetic Algorithm) based Fuzzy Logic Controller is designed to implement for the attitude control of flexible satellite. The results obtained by employing GA based FLC are compared with those by FLC. It shows much shorter settling time and smaller tip mass oscillation.

  • PDF