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Trajectory Control of the Flexible Manipulator with Time-Varying Arm
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Abstracts Several papers have already been reported on the flexible manipulator with constant arm length. Some of
industrial manipulators, however, have sliding joints. It means that the length of their arm or link varies with time.
This paper discusses the trajectory control of such a manipulator model, and shows some of the experimental results.
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1. INTRODUCTION

Recently, the speedy and precise movement is de-
manded on an industrial manipulator to improve its
productive capacity. When an industrial manipulator,
however, moves in high speed, it often causes unignor-
able elastic deflection of arms. In the present situation,
we meet these demands by raising the rigidity of ma-
nipulator arms and its input power. However, there
is a limit to these method. Therefore, it may be rea-
sonable to consider its arm as an elastic body rather
than as rigid one. Many papers on flexible manipula-
tors have been reported in recent years. As for the mo-
tion control problems of flexible manipulators, Book[1]
first reported the formulation and examination concern-
ing the control problem for reducing oscillation of the
manipulator with 2 links and 2 rotation joints. Actu-
ally, however, there are a lot of industrial manipulators
which vary the length of their links by sliding joints.
Moreover, the oscillation analysis and the trajectory
control on those manipulators still remain almost un-
established. This paper concerns the trajectory control
of such a flexible manipulator. Since the flexible arm
of that manipulator has a sliding joint, the arm length
of elastic part varies with time. Therefore, we can not
assume a solution by the method of separation of vari-
ables in the strict sense.

First, we derive the expression of elastic deflection
model under new assumptions that make it possible to
use the method of modal analysis. Second, we built up a
hardware model of polar coordinate type with a flexible
sliding arm to meet the demands stated above. Then,
we conducted a trajectory control experiment with the
control input derived by the expression of elastic de-
flection model. We compared the performance of the
control system designed by using the rigid model with
that of the control system designed using the elastic one
through an open-loop optimal control experiment. As
a result, we have shown the validity of the expression
of elastic deflection.

2. MODELING OF THE MANIPULATOR
OF POLAR COORDINATE TYPE

From the engineering point of view, there are 2 lines
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of approach for trajectory control of a flexible manipu-
lator. One is to determine the motion of sliding joint’s
part beforehand and to control the motion of rotation
joint’s part. The other is to determine the motion of
rotation joint’s part beforehand and to control the mo-
tion of sliding joint’s part. The former approach was
reported by Nishibayashi[2] and Park([3][4], to show a
few simulated results. We take the latter approach.

2.1 Ezposition of The Arm System

Fig. 1. Manipulator of polar coordinate type.

Fig. 1 shows the whole schematic of the manipulator
of polar coordinate type. The first link is the rigid body.
The second link is the elastic body, and it connects
with the first link by sliding joint. The length of the
first link is L; + L3, that of the second is L, and the
total length of manipulator is R(¢). #(t) is the angle
between Z and X. We denote the origin of the first
link by O;, and that of the second by O2. We define
the line between O; and the end-effector of the second
link as ‘virtual rigid body’. Its length is R,;.(¢), and its
rotation angle is 6,:.(t). The stational coordinates of
inertia O; XY that is named ‘the standard coordinates
system’ and the distance from the origin O, is defined as
zo. The coordinates O, XY that is fixed in the second
link is named ‘the objective coordinates system’ and the
distance between the end-effector and the origin O, is
defined as . The elastic deflection §(Z,t) of the second
link is at Z.



2.2 Modeling of Arm System

The relation between R,;.(f) and 6,;.(t) on the ob-
jective coordinates system is as follows.

— -1 ’y(L 7t)
B, (2) = (2) — tan ( = ) 1)
Ruir(t) = VB T P (La D). (2)

Next, we show the relation between the standard co-
ordinates system and the objective coordinate system.

X = R(t) cos8(t) + §(La, t) sin 6(¢t), (3)

Y = R(t)sin6(t) — §(L, t) cos8(t), (4)
or

X = Ryir(t) cos 0uir(2), (5)

Y = Ryir(t) sin Buir (2). (6)

Next we derive the equation of motion of elastic de-
flection concerning the arm system. We set some as-
sumptions for modeling the flexible manipulator.

[A—1) Elastic deflection on the second link can be mod-
eled as Bernoulli-Euler Beam[2].

[A — 2] Rotation angle 8(t) is determined beforehand.
(A — 3] Elastic deflection §(Z,t) = 0 when £ = L; +
Ly — R(t).

[A — 4] We ignore the terms more than the second de-
gree with respect to y(z,t),y(x,t), R(t) and 8(t)

We use Hamilton’s principle to formulate the complex
mechanism like flexible arm easily and neatly. The ki-
netic energy 7', the potential energy U and the virtual
work W of the manipulator of polar coordinate type
are as follows. “ - ” means differential with time.

L,
2T = / plAl'I";'l.’ldx()
—Ls
Li+La—R(t)
+ / pzAQ’I";’f‘zdft
1]
L,
-+ / p2A27‘§1‘3d§:, (7)
L, +L2-—R(i)

and

T = [.’E()COSG(t) .’L‘oSiDG(t)]T (0 <z _<_ Ll), (8)

re = [(R(t) — Ly + T)cosh(t)
(R(t) — Ly + Z)sinf(t)]”
(0<z <Ly + Ly - R(t)), (9)
r3 = [(R(t) — Ly + Z)cosf(t) + §(Z,t)sinf(t)

(R(t) — Ly + 2)sind(t) — §(z, t)cosd(t)]]"
(Li+ Ly — R(t) <z < Ly), (10)

L2 250 7 2
o = EI (Q—y(‘z—t)) dz
Li+La—R(2) 0z
(L1 + L2 — R(t) £z < L), (11)
W = wh(t). (12)

Where p; A; is the mass per unit length of the first
link and p; A3 is that of the second link. ET is flexu-
ral rigidity, and w is the torque to rotate the first link.
“ 7 ” means the transposition. Next using the follow-
ing relationship, we can nondimentionalize the above

equations to make the analysis easy.
T = (R(t) — L1)xz + (L1 + L2 — R(Y)), (13)
y(z,t) = (R(t) — L1)y(z,1). (14)
Arrange the Eqgs.(7) ~ (14) and substitute them into
Eq.(15),

t2
ST -V +W)dt =0, (15)

t,

where t;,t; express optional time and the symbol § in
the integral signifies the first-order variation. Then we
get next nonlinear differential equation and its bound-
ary conditions.

EI Fy(z,t)
(R(t) — L,)® Ox*
+p2 A [{ R(t)y(z, 1) + (R(t) — L1)ij(z, t)}

—0(){(R(®) - L)z + L1 }] = 0, (16)
2 3
0(0,8) = ayg: t) _9 ZS‘;” _ 0 ggt) —0(17)

2.3 Method of Modal Analysis

Generally, it is difficult to solve the partial differen-
tial equation like (16). So we use the method of modal
analysis regarding the elastic deflection y(z,t) as the
linear combination of the product of proper modal func-
tion ¢:i(z) (¢ = 1,2,---) and time function ¢;(t) (i =
1,2,---

y(z,t) = Y dul@)ai(t). (18)

i=1

This method is focused on the constant length links.
However, we cannot separate the variables to the link
with time-varying length like this model. Therefore the
method of modal analysis cannot be applied to it in the
strict sense. Accordingly we derive the numerical model
by introducing the following tricky way of thinking to
make it possible to use the method of modal analysis.

1.Getting the equation of elastic deflection with con-
stant length at a certain time ¢ under the assumption
that the elastic arm oscillates in the same manner even
after that time instant. We can use the method of
modal analysis because the link’s length is presumed
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as to be constant.

2.After a tiny time At has elapsed, we derive the equa-
tion of elastic deflection with constant length at that
time instant under the similar presumption that it con-
tinues the same oscillation after that time. Then we
use the method of modal analysis.

3.Repeat the same processes, and bring a tiny time to
tend to zero. Then we get the equation of elastic de-
flection.

Based on this way of thinking, first we consider the
whole length R(t) as constant and apply the method
of modal analysis to the Eq.(16) by substitution of the
equation like (18), after all calculations finished we con-
sider R(t) as the time-varying function. As a result
¢i(x) and ¢;(t) are obtained as follows.

¢i(z) = p;{(sinh k; + sin k;)(cosh k;z — cos k;x)

—(cosh k; + cos k;)(sinh k;z — sin k;z)}, (19)
q:(t) = c%%% - ':%(((g cos v/ a;(t)t, (20)
. EIk} R(t)
“O= S mED Ly TRO-L )
— A ' Ll .
Bi(t) = 9(t)/0 (fc + m) ¢i(z)dz, (22)

where p; is normalized constants, and k; (i =1,2,---)
is the solution of the following equation.

1+ cos k;-cosh k; =0,(0 < ky < k2 <---).(23)

2.4 Modeling of Driving Part

On the driving part, the rotational motion are con-
verted into the linear motion by using the ball nut and
ball screw mechanism. The relation between the rota-
tion of ball screw and the linear motion of ball nut is
as follows.

. ! -

R(t) = —0(1), (24)
2r

where [ is the lead of the ball screw and é(t) is the

rotational angle of the ball screw. From this relation

we can get the Eq.(25) as follows.

x = Ax + Bu(t), (25)
where
R(t)
X = [R(t) }, (26)

and u(t) is the electric current, A, B is the matrix that
are determined by the parameters of the driving part.
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PLANNING OF AN OPTIMAL
CONTROL INPUT

We make the end-effector of the flexible arm tracked
along the desired trajectory by inputting the electric
current u(t) under the pre-determined angular veloc-
ity. In this paper, we set up the straight line trajectory
as the desired one for the end-effector of manipulator.
An input is determined for the end-effector to get along
that trajectory by using Fletcher-Reeves method, which
is one of the popular algorithms used in the optimal
control calculation. When the flexible arm moves, the
deflection and oscillation often occurs because of link’s
elasticity, and it generates an error against the desired
trajectory. We derive the control input to minimize
that error using the optimization algorithms. We show
the functional equation and the process for using algo-
rithms.

3.

Functional equation :

7=ty xt) + [ Liexe,uO) (20
g(ts,x(tr)) = wgi(Ralts) — Ruin(ts))?
+ wgi(Ralts) — Ruir(ty))®, (28)
L(t,x(t),u(t)) = wi?(R4(t) — Ryir(t))?
+ wlg(Rd(t)_Ruir(t))2
u(t) 2
+ <U_m;:) R (29)

where wg1,wgq, wl; and wly are weighting coeflicients,
R4(t) is the desired trajectory and R4(t) is the desired
velocity, and t; is terminal time.

We get the optimal input u(t) that satisfies the dif-
ferential equation (25) and the initial condition x|,_, =
[L1,0]" to minimize the value of (27).

Calculation process :
(i)Guess the initial input u(t).
(ii)Derive the value of R(t), R(t) by using u(t).
(iii)Derive the value of §(z,t) by using R(¢), R(t).
(iv)Derive the value of R, (t), Ryir(t) by using §(z, t).
(v)Derive the value of J by using Ryir(t), Ruir(t).
(vi)If J is not sufficiently small, derive the new input
u(t) by means of Fletcher-Reeves method, or else finish
calculation.

4. EXPERIMENTS

4.1 Ezxperimental Device

Fig. 2 shows the schematic of experimental device.
There are 2 motors. One is for the part of the rota-
tion joint. Its torque is conveyed to the reducing gear
through belt, and generates the rotation of the first link.
The other is for the part of sliding joint, and its rota-
tional motion is changed into the translational motion
of the second link through the ball nut and screw mech-
anism. A fine needle is attached to the end-effector. We



measure the tracking error of the end-effector by using
the needle with ink. We conduct the experiment of
trajectory control by using this device.
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Fig. 2. Schematic of the experimental device.
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4.2 Control Experiment

As we said before, the optimal input is planned by us-
ing the functional equation. But we do not know which
weighting coefficients are significant for the trajectory
control when we consider the flexibility of arm. Then
we simulate 5 cases changing the weighting coeflicient
in the functional as follows.

Case (1) wg1 = 1000, wgz = 1000, wl; = 1000, wl> = 1000
Case (2) wg1 = 0, wg2 = 1000, wl; = 1000, wl; = 1000
Case (3) wgy = 1000, wgs = 0, wl; = 1000, wl; = 1000
Case (4) wg1 = 1000, wg2 = 1000, wl; = 0, wlz = 1000
Case (5) wg: = 1000, wg2 = 1000, wl; = 1000, wlz =0

We have simulated the all cases, but we show here
only the cases (4) and (5) which indicate the clear dif-
ferences in control performance between by using the
flexible manipulator model and by using the rigid ma-
nipulator model. So we conduct the control experiment
in the cases of (4) and (5). Then we get the experimen-
tal results shown in Figs. 3 and 4. The experimental
data of error are shown in TABLE 1.

When we compare the trajectory error of the flexible
manipulator with that of rigid one, we can see that a
better result obtained from the optimal control using
the equations of elastic deflection. '

0222
0220 } —— Flexible /
0218 } Rigid

0216 F\
0214 |
0212
0210 |
0.208

X [m]

0 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Y [m]

Fig. 3. Experimental results for case (4).
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Fig. 4. Experimental results for case (5).

TABLE 1 The Error obtained from the experiment.

Case (4) Case (5)
Rigid Flexible Rigid Flexible
Maximum Error[m] | 0.0083 0.0033 0.0072 0.0053
Mean Error[m] 0.0051 0.0019 0.0039 0.0025
5. CONCLUSIONS

The oscillation analysis and trajectory control on the
manipulators with sliding joints are considered in this
paper.

(i) As to the oscillation analysis, we modeled the equa-
tion of the elastic deflection of time-varying flexible arm
under the new assumptions.

(ii)As to the trajectory control, we built up an experi-
mental system and conducted a preliminary experiment
to show the validity of the present approach. Although
we could get the data of the positioning error through
the experiment, the following problems still remain for
further study. (i)To consider the measuring method to
obtain the elastic deflection as time varying system.
(ii)To conduct the additional experiments with the de-
sired trajectory of other type.
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