• 제목/요약/키워드: Orthotropic

검색결과 723건 처리시간 0.027초

Assessing interfacial fracture in orthotropic materials: Implementing the RIS concept with considering the T-stress term under mixed-mode I/II

  • Zahra Khaji;Mahdi Fakoor
    • Steel and Composite Structures
    • /
    • 제50권2호
    • /
    • pp.237-247
    • /
    • 2024
  • Research on interfacial crack formation in orthotropic bi-materials has experienced a notable increase in recent years, driven by growing concerns about structural integrity and reliability. The existence of a crack at the interface of bi-materials has a substantial impact on mechanical strength and can ultimately lead to fracture. The primary objective of this article is to introduce a comprehensive analytical model and establish stress relationships for investigating interfacial crack between two non-identical orthotropic materials with desired crack-fiber angles. In this paper, we present the application of the Interfacial Maximum Tangential Stress (IMTS) criterion, in combination with the Reinforcement Isotropic Solid (RIS) model, to investigate the behavior of interfacial cracks in orthotropic bi-materials under mixed-mode I/II loading conditions. We analytically characterize the stress state at the interfacial crack tip using both Stress Intensity Factors (SIFs) and the T-stress term. Orthotropic materials, due to their anisotropic nature, can exhibit complex crack tip stress fields, making it challenging to predict crack initiation behavior. The secondary objective of this study is to employ the IMTS criterion to predict the crack initiation angle and explore the notable impact of the T-stress term on fracture behavior. Furthermore, we validate the effectiveness of our approach in evaluating Fracture Limit Curves (FLCs) for interfacial cracks in orthotropic bi-materials by comparing our FLCs with relevant experimental data from existing literature.

두께가 변하는 직교이방성판의 탄성좌굴해석 (Elastic Buckling Analysis of a Simply Supported Orthotropic Plate with Exponentialy Variable Thickness)

  • 장성열;정상균;윤순종
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.25-28
    • /
    • 2001
  • The problem considered is the buckling of a rectangular orthotropic plate, tapered in thickness in a direction parallel to two sides and compressed in that direction. Curves are presented showing the variation of buckling stress coefficient with the special loads. The type of thickness variation is exponential. While this paper is presented how to design for an efficient orthotropic plate taper from physical consideration.

  • PDF

두직교이방성 평판을 접착한 구조물의 응력화대변수 (Stress intensity factors in adhesive bonded orthotropic structures)

  • 노희승;홍창선
    • 대한기계학회논문집
    • /
    • 제5권3호
    • /
    • pp.217-222
    • /
    • 1981
  • The stress analysis of two-orthotropic layer, adhesively bonded structures is considered. An orthotropic plate has a through-crack of finite length and is adhesively bounded by a sound orthotropic plate. The problem is resuced to a pair of Fredholm integral equations ofthe second kind. Using a numerical integration scheme to evaluate the intgrals, The integral equations are reduced to a system of algebraic equations. By solving these equations some numerical results for stress intensity factors are presented for various crack lengths.

Orthotropic Theory for the Prediction of Mechanical Performance in Thermally Point-bonded Nonwovens

  • Kim, Han-Seong
    • Fibers and Polymers
    • /
    • 제5권2호
    • /
    • pp.139-144
    • /
    • 2004
  • The orthotropic theory is applied for the nonwoven fabrics that have a preferred orientation direction, the case if the structure is not isotropic. The polynomial regression analysis is employed to allow the attainment of more statistically meaningful information. A functional form based on the transformation rule is developed for the orthotropic approach. The predictions thus obtained are seen to be in excellent agreements with experimental data and the resulting compliances exhibit meaningful relationships for the processing conditions. The compatibility of the compliances from tensile and shear analyses has been explored prior to a practical application of the four compliances defining the in-plane strain-stress field.

직교이방성 재료에 대한 경계요소법(BEM)의 기본해에 관한 연구 (A study of fundamental solution of BEM for orthotropic materials)

  • 이갑래;조상봉;최용식
    • 오토저널
    • /
    • 제12권2호
    • /
    • pp.51-58
    • /
    • 1990
  • According to the developments of various composite materials, it seems to be very important to evaluate the strength and fracture behavior of composite materials. When the composite material is considered as orthotropic material, the characteristic equation of orthotropic material have complex roots. If characteristic roots are equal, the fundamental solutions of BEM become singular ones. This paper analyse the fundamental solutions of the singular problem of orthotropic material using the analogous method to isotropic material.

  • PDF

개단면 리브를 갖는 보강판에 대한 직교이방성 강성의 보정 방법 (The Modified Method of Orthotropic Rigidities for Stiffened Plates with Open Ribs)

  • 주석범;최영
    • 한국강구조학회 논문집
    • /
    • 제16권2호통권69호
    • /
    • pp.191-200
    • /
    • 2004
  • 본 연구에서는 보강판을 직교이방성 판으로 해석하는 경우 보강판의 제원에 따라 정확도에 큰 차이를 보이는 단점을 해결하기 위하여, 개단면 리브를 갖는 보강판에 대하여 직교이방성 강성을 보정하는 방법을 제안하였다. 여러 가지 보강판에 대하여 등방성 및 직교이방성 판 요소로 모델링하여 해석하고 최대 처짐을 비교한 결과, 특정 강성비를 중심으로 이보다 강성비가 작아질수록 직교이방성 판이 더 작은 처짐을, 이보다 커질수록 더 큰 처짐을 나타내어 정확도의 향상을 위해서는 강성비에 따른 직교이방성 강성 수정이 이루어져야 함을 알 수 있었다. 거동 분석을 토대로, 직교이방성 판의 처짐식과 판만의 처짐과 관련한 처짐 비율을 이용하는 두 가지 강성 수정 방법을 제안하였으며, 두 경우 모두 오차율 및 오차율의 분포폭이 크게 감소하여 정확도가 크게 향상되지만, 처짐 비율의 방법이 처짐식을 이용한 방법보다 사용성 및 안정성 측면에서 더 적절한 것으로 나타났다. 또한, 개단면 리브를 갖는 보강판을 직교이방성 판으로 해석하는 경우, 본 연구에서 제안한 강성 수정 방법을 사용하여 보강판의 직교이방성 휨강성을 보정하게 되면, 상당한 정확성의 증가로 보강판에 대한 간편하고 타당한 결과를 얻을 수 있을 것으로 판단된다.

순수 비틀림 모멘트를 받는 직교 이방성체의 광탄성 시험법 개발에 관한 연구( I )-차원 광탄성 실험법 모델의 절단법과 $G_{i} 와 f_{ij}$ 의 측정법 - (A Study on the Development of Photoelastic Experiment for Orthotropic Material Under Pure Torsional Moment (I) : The Slicing Method Of 3-Dimensional Photoelastic Experiment Model And The Measuring Method of $G_{I} And f_{Ij}$)

  • 황재석;방창일
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.424-435
    • /
    • 1991
  • To develop the photoelastic experiment method for the orthotropic material under pure torsional moment is the main objective of this research. In the development of photoelastic experiment for orthotropic material under pure torsional moment, the important problems and their solutions are the same as following. In the model material for photoelastic experiment, it was found that C.F.E.C.(Copper Fiber Epoxy Composite) can be used as the model material of photoelastic experiment for orthotropic material. In the stress freezing cycle, it was assured that stress freezing cycle for epoxy can be used as the stress freezing cycle of the photoelastic experiment for orthotropic material. In the slicing method, it was found that the negative oblique slicing method can be effectively used as slicing method in 3-dimensional photoelastic experiment. In the measuring method of stress fringe values and physical properties in the high temperature, it was found that stress fringe values can be directly measured by experiment and physical properties can be directly or indirectly by equation between stress fringe values and physical properties developed by author. In the stress analysis method of orthotropic material under pure torsional moment by photoelastic experiment, it will be studied in the second paper.

면내 선형분포하중을 받는 고정지지된 직교이방성판의 좌굴 (Buckling of Fixedly Supported Orthotropic Plate under In-plane Linearly Distributed Forces)

  • 정재호;채수하;남정훈;윤순종
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.5-8
    • /
    • 2000
  • This paper presents the results of an elastic buckling analysis of orthotropic plate under in-plane linearly distributed forces. The analytical solution for the orthotropic plate whose boundaries were assumed to be simply supported was derived in the previous work. In this study the loaded edges of plate are assumed to be simply supported and other two edges are assumed to be fixed. For the buckling analysis Rayleigh-Ritz method is employed. Graphical form of results for finding the elastic buckling strength of orthotropic plate under in-plane linearly distributed forces is presented.

  • PDF

미분구적법을 이용한 직교이방성 원판의 대변형 해석 (Large deflection analysis of orthotropic thin circular plates using differential quadrature)

  • 이영신;박복선
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.387-395
    • /
    • 1991
  • Large deflection behavior of cylindrically orthotropic thin circular plates is investigated by the numerical technique of differential quadrature. Governing equations are derived in terms of transverse deflection and stress function and a Newton-Raphson technique is used to solve the nonlinear systems of equations. For small values of degree of differential quadrature (N.leq.13), as the degree of differential quadrature increases, the center deflection converges. However, as N increases further, the center deflection diverges by ill-conditioning in the weighting coefficients. As the orthotropic parameter increases, the center deflection decreases and behaves linear for the loads. At center, the stress is affected mainly by orthotropic parameter, while the stress is affected mainly by boundary condition at edge.