• Title/Summary/Keyword: Organic wastewater compounds

Search Result 185, Processing Time 0.031 seconds

Volatile Organic Compounds contamination in some urban runoff and groundwater samples in Seoul City (서울시 도로변 빗물과 지하수의 VOCs오염)

  • 이평구;박성원;전치완;신성천
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.73-91
    • /
    • 2001
  • compounds (VOCs) were selected for assessment of VOCs contamination in some urban runoff and groundwater samples in Seoul. They included 3 aromatic hydrocarbons, 13 alkyl benzenes, 1 ether, 26 halogenated alkanes, 10 halogenated alkenes, and 9 halogenated aromatics. The levels of VOCs in urban runoff and groundwater were measured for samples collected in March 2000, June 2000 and November 2000 in Seoul City. A total of 78 samples (44 run-off water, 27 groundwater, and 7 samples from 4 urban wastewater treatment plants in Seoul) were collected and analysed by GC-MS with purge and trap. After examination of the runoff, it was concluded that alkyl benzenes and aromatic hydrocarbons were organic compounds which were significantly impacted by traffic flows in Seoul. Of 62 VOCs, only 11 VOCs were not detected in runoff samples, while 14 VOCs were detected in 27 groundwater samples. The toluene content in the runoff was extremely variable from 0.1ppb to 29,310ppb, depending on the different sampling sites. The concentrations of xylene ranged between 0.07ppb and 2970ppb in the runoff. The concentrations ranged from 0.05ppb to 33.0ppb for benzene, 0.05ppb to 960ppb for ethylbenzene, 0.08ppb to 20ppb for trichloromethane (chloroform) , 0.03ppb to 4.30ppb for trichloroethylene(TCE) and 0.1ppb to 50ppb for 1,1,2-trichloroethane. From the preliminary study of groundwater from some wells in Seoul, the most frequently detected VOCs are djchlorornethane(methylene chloride), trichloromethane(chloroform) and toluene. Most of aromatic hydrocarbons, alkyl benzenes and other solvents generally lower than detection limits.

  • PDF

Biological Treatment of Wastewater Containing Chlorinated Phenols by a Mixed Culture (복합미생물제재를 이용한 염소화 페놀계 폐수의 생물학적 처리)

  • 오희목;이완석;정상욱;박찬선;윤병대;김장억
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.115-121
    • /
    • 2001
  • Biological Treatment of Wastewater Containing Chlorinated Phenols by a Mixed Culture. Lee, Wan-Seok1, Sang-Wook Jung, Chan-Sun Park, Byung-Dae Yoon, Jang-Eok Kim\ and Hee-Mock Oh*. Environmental Bioresources Laboratory, Korea Research Institute of Biosicence and Biotechnology, Taejon, Korea, 1 Department of Agricultural Chemistry, Kyungpool< National University, Taegu, Korea - The biodegradation of chlorinated phenols in an artificial wastewater was investigated using a mixed culture. The mixed culture was composed of 8 microorganisms isolated from the soil contaminated with various chlorinated phenols. Pseudomonas sp. BM as a main constituent of a mixed culture was Gram-negative, catalase- and oxidase-positive, and rod-shaped, and did not grow at 41°C. It degraded 99% of initial 500 mg!1 of pentachlorophenol (PCP) in the minimal salts medium as a sole source of carbon and energy within 3 days. The degradation efficiency of Pseu.domon.as sp. BM was not affected by the other organic carbon and nitrogen compounds. Pseudomonas sp. BM was able to grow in a broad range of pH 5 - 8, and degrade 2,000 mg/1 PCP. In the experiment with an artificial wastewater containing chlorinated phenols, the degradation efficiency of the mixed culture was the range of 73% (2,4-dichlorophenol) -96% (2-chlorophenol) during an incubation of 7 days. In a continuous culture experiment, the degradation efficiency of mixed culture plus activated sludge was about 2 times higher than that of the control containing only activated sludge. These results indicate that it is possible to apply the mixed culture to other wastewaters containing chlorinated phenols. Key words: Biodegradation, chlorinated phenols, pentachlorophenol, Pseudomonas sp. BM

  • PDF

Effect of Inorganic Coagulants on the Performance of Electro-Chemical Treatment Process Treating Hospital Wastewater (병원폐수의 전기화학적 처리시 무기응집제 주입 효과에 관한 연구)

  • Jeong, Seung-Hyun;Jeong, Byung-Gon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.709-716
    • /
    • 2011
  • Effect of inorganic coagulants dosing on the performance of electro-chemical process was studied when treating hospital wastewater having low electrolyte concentration. It is thought that adding inorganic coagulants caused increase in concentration of electrolyte and this caused increase in free chloride concentration and consequently, caused increase in indirect oxidation effect. Thus, COD removal efficiencies more than doubled in percentage terms at the 2 hrs of reaction time and current density of $1.76A/dm^2$ compared with the results obtained from the parallel experiments without adding inorganic coagulants. T-N removal efficiencies approximately doubled in percentage terms at the 2 hrs of reaction time and 700 ppm of coagulants addition and applied current density of $1.76A/dm^2$ due to the increase of free residual chlorine such as HOCl caused by increase of electrolyte concentration through the addition of inorganic coagulants. Under the same experimental condition, more than 90% of T-P removal efficiencies was obtained. The reason can be explained that increase of chemical adsorption rate between phosphate and insoluble metal compounds caused by dissolved oxygen generated from anode by the increased electrolyte concentration through inorganic coagulants addition make a major role in improving T-P removal efficiencies. It can be concluded that inorganic coagulants addition as the supplemental agent of electrolyte is effective way in improving organic and nutrient salt removal efficiency when treating hospital wastewater having low electrolyte concentration.

Control of Nano-Structure of Ceramic Membrane and Its Application (세라믹 멤브레인의 나노구조 제어 및 응용)

  • Lee, Hye-Ryeon;Seo, Bong-Kuk;Choi, Yong-Jin
    • Membrane Journal
    • /
    • v.22 no.2
    • /
    • pp.77-94
    • /
    • 2012
  • Amorphous ceramic membranes have been developed for gas phase separation and liquid phase separation (water treatment, wastewater treatment and separation of organic solvent or compounds) because of their thermal stability and solvent resistance. In this paper, ceramic membranes were categorized by membrane pore size and materials, and summarized for hydrogen separation, carbon dioxide separation, membrane reactor, pervaporation and water treatment with membrane structure and properties.

외부 반송이 있는 생물활성탄담체(BACC) 공정에 의한 오수 중 질소${\cdot}$인의 동시 제거

  • Lee, Ho-Gyeong;Gwon, Sin;Jo, Mu-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.414-417
    • /
    • 2000
  • BACC(Biological Activated Carbon Cartridge)process is a newly developed biological process to remove organic compounds, nitrogen, and phosphorus with activated carbon granules in iron fixed-frame cartridge type. The largest defect of previous BACC process was denitrification inefficiency. The removal efficiencies of nitrogen and phosphorous with external recycle ratios $100{\sim}200%$ for synthetic wastewater were $69.8{\sim}90.1%$ and $62.18{\sim}91%$, respectively, since the modified BACC process with external recycle overcame the defect of BACC process. When external recycle ratio was increased more than 300%, T-N removal efficiencies were decreased. In the treatment of a real sewage using modified BACC process, $COD_{Cr}$, removal efficiencies were $96.3{\sim}97.5%$ which was similar to those of the previous BACC process. while T-N removal efficiencies was $88.3{\sim}95.7%$ which were superior to those of the previous BACC process.

  • PDF

Life Cycle Assessment for the Business Activities of Green Company -1. Analysis of Process Flow and Basic Unit (녹색기업의 사업활동 전 과정에 대한 환경성 평가 -1. 공정 흐름 및 원단위 분석)

  • Shin, Choon-Hwan;Park, Do-Hyun
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.269-279
    • /
    • 2013
  • In this paper, an environmental assessment was carried out on the whole process of industrial business activities to establish a basic plan for climate change mitigation and energy independency. The whole process was divided into each discharge process in terms of water, air, solid waste, green house gases and refractory organic compounds. The flowcharts and basic unit of process were analysed for three years (2008-2010), being utilized as basic information for the life cycle assessment. It was found that the unit loading for the whole process significantly depends on changes in the operation rate change and highly concentrated wastewater inflow. About 35% of solid waste production was reduced by improving the incineration method with co-combustion in coal boiler, generating about 57% of electricity used for the whole process, and consequently reducing the energy costs. As the eco-efficiency index was found to be more than 1, compared to the previous years, it can be said that improvement in general has taken place.

Phenol Treatment Plasma Reactor of Dielectric Barrier Discharge (유전체 장벽 방전 플라즈마 반응기를 이용한 페놀 처리)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.479-488
    • /
    • 2012
  • A Dielectric barrier discharge (DBD) plasma is shown in the present investigation to be effective of phenol degradation in the aqueous solutions in batch reactor with continuous air bubbling. Removal of phenol and effects of various parameters on the removal efficiency in the aqueous solution with high-voltage streamer discharge plasma are studied. The effect of 1st voltage (80 ~ 220 V), air flow rate (3 ~ 7 L/min), pH (3 ~ 11), electric conductivity of solution (4.16 ${\mu}S$/cm, deionized water) ~ 16.57 mS/cm (addition of NaCl 10 g/L) and initial phenol concentration (2.5 ~ 20.0 mg/L) were investigated. The observed results showed that phenol degradation was higher in the basic solution than that of the acidic. The optimum values on the 1st voltage and air flow rate for phenol degradation were 140 V and 6 L/min, respectively. It was considered that absorbance variation of $UV_{254}$ of phenol solution can be use as an indirect indicator of change of the non-biodegradable organic compounds within the treated phenol solution. Electric conductivity was not influenced the phenol degradation. To obtain the removal efficiency of phenol and COD of phenol over 97 % (initial phenol concentration, 10.0 mg/L), 80 min and 120 min were need, respectively. Phenol and COD degradation showed a pseudo-first order kinetics.

Recent Development of Drinking Water Quality Standard and its Application (음용수질 기준과 관리방안)

  • 권숙표
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.83-94
    • /
    • 1992
  • Recently water demand is increasing as the industry prospers. The increase of water demand is followed by the increase of wastewater discharge which pollutes rivers and ground water extensively. These rivers, reservoirs and ground water are sources for drinking water and their contamination affects the quality of water supply and other potable water. In Korea there are 776 water treatment plants which supply drinking water from main rivers or reservoirs. Rivers are the biggest water source for drinking water is being contaminated, the innovation of treatment process is needed. The construction and operation of water supply facilities is under the control of the Ministry of Construction and the water supply offices of cities and provinces. However, drinking water quality is under the control of the bureau of sanitation in the Ministry of Health and Social Affairs. There are 33 items in drinking water quality standards of Korea. Trihalomethanes, Selenium, Diazinone and other three of pesticides have been included lately, The Ministry of Health and Social Affairs is planning to enhance. the level of $VOC_S$(Vola-tile Organic Compounds) standard. Drinking water quality standard is the goal to protect the quality of supply water and ground water. In order to protect the source water from domestic or industrial water, technological improvement and adequate investment should be urgently made. The ultimate goal of drinking water quality is safety and health of consumers. The more stringent the standard are, the better the water quality will be. As the drinking water quality standards become more stringent this year, various and positive solutions by the authorities concerned must be prepared.

  • PDF

Design of Ultra-sonication Pre-Treatment System for Microalgae CELL Wall Degradation

  • Yang, Seungyoun;Mariappan, Vinayagam;Won, Dong Chan;Ann, Myungsuk;Lee, Sung Hwa
    • International journal of advanced smart convergence
    • /
    • v.5 no.2
    • /
    • pp.18-23
    • /
    • 2016
  • Cell walls of microalgae consist of a polysaccharide and glycoprotein matrix providing the cells with a formidable defense against its environment. Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This paper preproposal stage investigated the effect of different pre-treatments on microalgae cell wall, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. This Paper present optimum approach to degradation of the cell wall by ultra-sonication with practical design specification parameter for ultrasound based pretreatment system. As a result of this paper presents, a microalgae system in a wastewater treatment flowsheet for residual nutrient uptake can be justified by processing the waste biomass for energy recovery. As a conclusion on this result, Low energy harvesting technologies and pre-treatment of the algal biomass are required to improve the overall energy balance of this integrated system.

Development of the vac Source Profile using Collinearity Test in the Yeosu Petrochemical Complex (여수석유화학산단의 공선성 시험을 이용한 VOC 오염원 분류표 개발)

  • Jeon Jun-Min;Hur Dang;Hwang In Jo;Kim Dong-Sul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.315-327
    • /
    • 2005
  • The total of 35 target VOCs (volatile organic compounds), which were included in the TO-14, was selected to develop a VOCs' source profile matrix of the Yeosu Petrochemical Complex and to test its collinearity by singular value decomposition(SVD) technique. The VOCs collected in canisters were sampled from 12 different sources such as 8 direct emission sources (refinery, painting, wastewater treatment plant, incinerator, petrochemical processing, oil storage, fertilizer plant, and iron mill) and 4 general area sources (gasoline vapor emission, graphic art activity, vehicle emission, and asphalt paving activity) in this study area, and then those samples were analyzed by GC/MS. Initially the resulting raw data for each profile were scaled and normalized through several data treatment steps, and then specific VOCs showing major weight fractions were intensively reviewed and compared by introducing many other related studies. Next, all of the source profiles were tested in terms of degree of collinearity by SVD technique. The study finally could provide a proper VOCs' source profile in the study area, which can give opportunities to apply various receptor models properly including chemical mass balance (CMB).