References
- S. P. Nunes and K.-V. Peinemann, "membranes technology in the chemical industry", Elsevier, Wiley-VCH, Germany (2006).
- J. Xiao and J. Wei, "Diffusion mechanism of hydrocarbons in zeolites-I. Theory", Chem. Eng. Sci., 47, 1123 (1992). https://doi.org/10.1016/0009-2509(92)80236-6
- A. B. Shelekhin, A. G. Dixon, and Y. H. Ma, "Theory of gas diffusion and permeation in inorganic molecular-sieve membranes", AIChE. J., 41, 58 (1995). https://doi.org/10.1002/aic.690410107
- M. Mulder, "Basic Principles of Membrane technology", Kluwer Academic Publishers, Dordrecht (1996).
- A. J. Burggraaf and L. Cot, "Fundermentals of inorganic membrane science and technology", Elesvier, Amsterdam (1996).
- T. Tsuru, "Nano/subnano-tuning of porous ceramic membranes for molecular separation", J. Sol-Gel Sci. Technol., 46, 349 (2008). https://doi.org/10.1007/s10971-008-1712-5
- C. J. Brinker and G. W. Scherer, "Sol-Gel Science", Academic Press Inc. San Diego (1990).
- B. N. Nair, K. Keizer, W. J. Elferink, M. J. Gilde, H. Verweij, and A. J. Burggraaf, "Synthesis, characterisation and gas permeation studies on microporous silica and alumina-silica membranes for separation of propane and propylene", J. Membr. Sci., 116, 161 (1996). https://doi.org/10.1016/0376-7388(96)00036-1
- R. S. A. de Lange, K. Keizer, and A. J. Burggraaf, "Analysis and theory of gas transport in microporous sol-gel derived ceramic membranes", J. Membr. Sci., 104, 81 (1995). https://doi.org/10.1016/0376-7388(95)00014-4
- R. S. A. de Lange, K. Keizer, and A. J. Burggraaf, "Aging and stability of microporous sol-gel-modified ceramic membranes", Ind. Eng. Chem. Res., 34, 3838 (1995). https://doi.org/10.1021/ie00038a022
- R. M. de Vos, W. F. Maier, and H. Verweij, "Hydrophobic silica membranes for gas separation", J. Membr. Sci., 158, 277 (1999). https://doi.org/10.1016/S0376-7388(99)00035-6
- M. C. Duke, J. C. D. da Costa, G. Q. Lu, M. Petch, and P. Gray, "Carbonised template molecular sieving silica membranes in fuel processing systems : permeation, hydrostability and regeneration", J. Membr. Sci., 241, 325 (2004). https://doi.org/10.1016/j.memsci.2004.06.004
- J. Campaniello, C. W. R. Engelen, W. G. Haije, P. P. A. C. Pex, and J. F. Vente, "Long-term pervaporation performance of microporous methylated silica membranes", Chem. Commun., 40, 834 (2004).
- H. L. Castricum, A. Sah, R. Kreiter, D. H. A. Blank, J. F. Vente, and J. E. ten Elshof, "Hydrothermally stable molecular separation membranes from organically linked silica", J. Mater. Chem., 18, 2150 (2008). https://doi.org/10.1039/b801972j
- H. L. Castricum, R. Kreiter, H. M. van Veen, D. H. A. Blank, J. F. Vente, and J. E. ten Elshof, "High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability", J. Membr. Sci., 324, 111 (2008). https://doi.org/10.1016/j.memsci.2008.07.014
- R. Kreiter, M. D. A. Rietkerk, H. L. Castricum, H. M. van Veen, J. E. ten Elshof, and J. F. Vente, "Stable hybrid silica nanosieve membranes for the dehydration of lower alcohols", Chem. Sus. Chem., 2, 158 (2009). https://doi.org/10.1002/cssc.200800198
- N. K. Raman and C. J. Brinker, "Organic "template" approach to molecular sieving silica membranes", J. Membr. Sci., 105, 273 (1995). https://doi.org/10.1016/0376-7388(95)00067-M
- G. Gao, Y. Lu, L. Delattre, C. J. Brinker, and G. P. Lopez, "Amorphous silica molecular sieving membranes by sol-gel processing", Adv. Mater., 8, 588 (1996). https://doi.org/10.1002/adma.19960080713
- K. Kusakabe, S. Sakamoto, T. Saie, and S. Morooka, "Pore structure of silica membranes formed by a sol-gel technique using tetraethoxysilane and alkyltriethoxysilanes", Sep. Purif. Technol., 16, 139 (1999). https://doi.org/10.1016/S1383-5866(98)00120-8
- M. Kanezashi, K. Yada, T. Yoshioka, and T. Tsuru, "Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability", J. Am. Chem. Soc., 131, 414 (2009) https://doi.org/10.1021/ja806762q
- M. Kanezashi, K. Yada, T. Yoshioka, and T. Tsuru, Organic-inorganic hybrid silica membranes with controlled silica network size: preparation and gas permeation characteristics, J. Membr. Sci., 348, 310 (2010). https://doi.org/10.1016/j.memsci.2009.11.014
- M. Kanezashi, M. Kawano, T. Yoshioka, and T. Tsuru, "Organic-inorganic hybrid silica membranes with controlled silica network size for propylene/propane separation", Ind. Eng. Chem. Res., 51, 944 (2011).
- H. R. Lee, M. Kanezashi, Y. Shimomura, T. Yoshioka, and T. Tsuru, "Evaluation and fabrication of pore-size-tuned silica membranes with tetraethoxydimethyl disiloxane for gas separation", AIChE J., 57, 2755 (2011). https://doi.org/10.1002/aic.12501
- H. R. Lee, T. Shibata, M. Kanezashi, T. Mizumo, J. Ohshita, and T. Tsuru, "Pore-size-controlled silica membranes with disiloxane alkoxides for gas separation", J. Membr. Sci., 383, 152 (2011). https://doi.org/10.1016/j.memsci.2011.08.046
- T. T. Sorita, S. Shiga, K. Ikuta, Y. Egashira, and H. Komiyama, "The formation mechanism and step coverage quality of tetraethylorthosilicate-silicon dioxide films studied by the micro/macrocavity method", J. Electrochem. Soc., 140, 2952 (1993). https://doi.org/10.1149/1.2220938
-
G. R. Gavalas, C. E. Megiris, and S. W. Nam, "Deposition of
$H_2$ -permselective silica films", Chem. Eng. Sci., 44, 1829 (1989). https://doi.org/10.1016/0009-2509(89)85125-5 -
S. Jiang, Y. Yan, and G. R. Gavalas, "Temporaty carbon barriers in the preparation of
$H_2$ -selective silica membranes", J. Membr. Sci., 103, 211 (1995). https://doi.org/10.1016/0376-7388(95)00004-V -
S. Kim and G. R. Gavalas, "Preparation of
$H_2$ permselective silica membranes by alternating reactant vapor deposition", Ind. Eng. Chem. Res., 34, 168 (1995). https://doi.org/10.1021/ie00040a016 -
S. Morooka, S. Yan, K. Kusakabe, and Y. Akiyama, "Formation of hydrogen-permselective
$SiO_2$ membrane in macropores of$\alpha$ -alumina support tube by thermal decomposition of TEOS", J. Membr. Sci., 101, 89 (1995). https://doi.org/10.1016/0376-7388(94)00293-8 -
B.-K. Sea, K. Kusakabe, and S. Morooka, "Hydrogen recovery from a
$H_2-H_2O-HBr$ mixture utilizing silica-based membranes at elevated temperatures. 2. Calculation of exergy losses in$H_2$ separation using inorganic membranes", Ind. Eng. Chem. Res., 37, 2509 (1998). https://doi.org/10.1021/ie980173l - B.-K. Sea, K. Kusakabe, and S. Morooka, "Pore size control and gas permation kinetics of silica membranes by pyrolysis of phenyl-substituted ethoxysilanes with cross-flow through a porous support wall", J. Membr. Sci., 130, 41 (1997). https://doi.org/10.1016/S0376-7388(97)00002-1
- S.-E. Nam and K.-H. Lee, "A study on the palladium/nickel composite membrane by vacuum electrodeposition", J. Membr. Sci., 170, 91 (2000). https://doi.org/10.1016/S0376-7388(99)00359-2
- S. Jung, K. Kusakabe, S. Morooka, and S. Kim, "Effects of co-existing hydrocarbons on hydrogen permeation through a palladium membrane" J. Membr. Sci., 170, 53 (2000). https://doi.org/10.1016/S0376-7388(99)00357-9
- Y. Gu and S. T. Oyama, "Ultrathin, hydrogenselective silica membranes depositied on alumina-graded structures prepared from size-controlled boehmite sols", J. Membr. Sci., 306, 216 (2007). https://doi.org/10.1016/j.memsci.2007.08.045
- Y. Gu, P. Hacarlioglu, and S. T. Oyama, "Hydrothermally stable silica-alumina composite membranes for hydrogen separation", J. Membr. Sci., 310, 28 (2008). https://doi.org/10.1016/j.memsci.2007.10.025
-
P. Hacarlioglu, D. Lee, G. V. Gibbs, and S. T. Oyama, "Activation energies for permeation of He and
$H_2$ through silica membranes: An ab initio calculation study", J. Membr. Sci., 313, 277 (2008). https://doi.org/10.1016/j.memsci.2008.01.018 - Y. Gu and S. T. Oyama, "Permeation properites and hydrothermal stability of silica-titania membranes supported on porous alumina substrates", J. Membr. Sci., 345, 267 (2009). https://doi.org/10.1016/j.memsci.2009.09.009
- Z. A. E. P. Vroon, K. Keizer, M. J. Gilde, H. Verweij, and A. J. Burggraaf, "Transport properties of alkanes through ceramic thin zeolite MFI membrane", J. Membr. Sci., 113, 293 (1996). https://doi.org/10.1016/0376-7388(95)00128-X
- C. Bai, M.-D. Jia, J. L. Falconer, and R. D. Noble, "Preparation and separation properties of silicalite composite membranes", J. Membr. Sci., 105, 79 (1995). https://doi.org/10.1016/0376-7388(95)00049-I
- J. E. Lewis, G. R. Gavalas, and M. E. Davis, "Permeation studies on oriented single-crystal ferrierite membranes", AIChE J., 43, 83 (1997). https://doi.org/10.1002/aic.690430111
- M. C. Lovallo and M. Tsapatsis, "Preferentially oriented submicron silicalite membranes", AIChE J., 42, 3020 (1996). https://doi.org/10.1002/aic.690421104
- F. Kapteijn, W. J. W. Bakker, G. Zheng, J. Poppe, and J. A. Moulijn, "Permeation and separation of light hydrocarbons through a silicalite-1 membrane. Application of the generalized Maxwell-stefan equations", Chem. Eng. J., 57, 145 (1995).
- W. J. W. Bakker, F. Kapteijn, J. Poppe, and J. A. Moulijn, "Permeation characteristics of a metal-supported silicalite-1 zeolite membrane", J. Membr. Sci., 117, 57 (1996). https://doi.org/10.1016/0376-7388(96)00035-X
- Japan Fine Ceramics Center: Report on Carbon Dioxide Recovery and Utilizing Technology (1997).
- C.-Y. Tsai, S.-Y. Tam, Y. Lu, and C. J. Brinker, "Dual-layer asymmetric microporous silica membranes", J. Membr. Sci., 169, 255 (2000). https://doi.org/10.1016/S0376-7388(99)00343-9
- C. J. Brinker, T. L. Ward, R. Sehgal, N. K. Raman, S. L. Hietala, D. M. Smith, D.-W. Hua, and T. J. Headly, "Ultramicroporous" silica-based supported inorganic membranes", J. Membr. Sci., 77, 165 (1993). https://doi.org/10.1016/0376-7388(93)85067-7
- R. J. R. Uhlhorn, K. Keizer, and A. J. Burggraaf, "Gas transport and separation with ceramic membranes. Part I. Multilayer diffusion and capillary condensation", J. Membr. Sci., 66, 259 (1992). https://doi.org/10.1016/0376-7388(92)87016-Q
-
Y. K. Cho, K. Han, and K. H. Lee, "Separation of
$CO_2$ by modified${\gamma}-Al_2O_3$ membranes at high temperature", J. Membr. Sci., 104, 219 (1995). https://doi.org/10.1016/0376-7388(95)00033-9 -
S. H. Hyun, S. Y. Jo, and B. S. Kang, "Surface modification of
$\gamma$ -alumina by silane coupling for$CO_2$ separation", J. Membr. Sci., 120, 197 (1996). https://doi.org/10.1016/0376-7388(96)00160-3 - T. Okui, Y. Saito, T. Okubo, and M. Sadakata, "Gas permeation of porous organic/inorganic hybrid membranes", J. Sol-Gel Sci. Tech., 5, 127 (1995). https://doi.org/10.1007/BF00487728
- J. Hayashi, M. Yamamoto, K. Kusakabe, and S. Morooka, "Effect of oxidation on gas permeation of carbon molecular sieving membranes based on BPDA-pp'ODA polyimide", Ind. Eng. Chem. Res., 36, 2134 (1997). https://doi.org/10.1021/ie960767t
- T. Suzuki and Y. Yamada, "Characterization of 6FDA-based hyperbranched and linear polyimidesilica hybrid membranes by gas permeation and 129Xe NMR measurements", J. Polym., Sci., B: Polymer Physics, 44, 291 (2006). https://doi.org/10.1002/polb.20692
- K. M. Steel and W. J. Koros, "An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials", Carbon, 43, 1843 (2005). https://doi.org/10.1016/j.carbon.2005.02.028
-
K. Kusakabe, T. Kuroda, A. Murata, and S. Morooka, "Formation of a Y-type zeolite membrane on a porous
$\alpha$ -alumina tube for gas separation", Ind. Eng. Chem. Res., 36, 649 (1997). https://doi.org/10.1021/ie960519x -
S. Li, G. Alvarado, R. D. Noble, and J. L. Falconer, "Improved SAPO-34 membranes for
$CO_2/CH_4$ separations", Adv. Mater., 18, 2601 (2006). https://doi.org/10.1002/adma.200601147 - Y. Cui, H. Kita, and K. Okamoto, "Preparation and gas separation performance of zeolite T membrane", J. Mater. Chem., 14, 924 (2004). https://doi.org/10.1039/b311881a
- S. Himeno, T. Tomita, K. Suzuki, and S. Yoshida, "Characterization and selectivity for membrane and carbon dioxide adsorption on the all-silica DD3R zeolite", Microporous Mesoporous Materials, 98, 62 (2007). https://doi.org/10.1016/j.micromeso.2006.05.018
-
S. Himeno, T. Tomita, K. Suzuki, K. Nakayama, and S. Yoshida, "Synthesis and permeation properties of a DDR-type zeolite membrane for separation of
$CO_2/CH_4$ gaseous mixtures", Ind. Eng. Chem. Res., 46, 6989 (2007). https://doi.org/10.1021/ie061682n - K. Aoki, K. Kusakabe, and S. Morooka, "Separation of gases with an A-type zeolite membrane", Ind. Eng. Chem. Res., 39, 2245 (2000). https://doi.org/10.1021/ie990902c
-
X. Gu, J. Dong, and T. M. Nenoff, "Synthesis of defect-free FAU-type zeolite membranes and separation for dry and moist
$CO_2/CH_4$ mixtures", Ind. Eng. Chem. Res., 44, 937 (2005). https://doi.org/10.1021/ie049263i - J. C. Poshusta, R. D. Noble, and J. L. Falconer, "Characterization of SAPO-34 membranes by water adsorption", J. Membr. Sci., 186, 25 (2001). https://doi.org/10.1016/S0376-7388(00)00666-9
-
M. P. Bernal, J. Coronas, M. Menendez, and J. Santamaria, "Separation of
$CO_2/N_2$ mixtures using MFI-type zeolite membranes", AIChE J., 50, 127 (2004). https://doi.org/10.1002/aic.10012 - A. K. Prabhu, A. Liu, L. G. Lovell, and S. T. Oyama, "Modeling of the membrane reforming reaction in hydrogen selective membrane reactors", J. Membr. Sci., 177, 83 (2000). https://doi.org/10.1016/S0376-7388(00)00449-X
- M. L. Bosko, J. F. Munera, E. A. Lombardo, and L. M. Cornaglia, "Dry reforming of methane in membrane reactors using Pd and Pd-Ag composite membranes on a NaA zeolite modified porous stainless steel support", J. Membr. Sci., 364, 17 (2010). https://doi.org/10.1016/j.memsci.2010.07.039
-
T. Tsuru, T. Morita, H. Shintani, T. Yoshioka, and M. Asaeda, "Membrane reactor performance of steam reforming of methane using hydrogen-permselective catalytic
$SiO_2$ membranes", J. Membr. Sci., 316, 53 (2008). https://doi.org/10.1016/j.memsci.2007.10.057 - G. Li, M. Kanezashi, and T. Tsuru, "Highly enhanced ammonia decomposition in a bimodal catalytic membrane reactor for COx-free hydrogen production", Catalysis Comm., 15, 60 (2011). https://doi.org/10.1016/j.catcom.2011.08.011
-
J. Yang, T. Yoshioka, T. Tsuru, and M. Asaeda, "Pervaporation characteristics of aqueous-organic solutions with microporous
$SiO_2-ZrO_2$ membranes: Experimental study on separation mechanism", J. Membr. Sci., 284, 205 (2006). https://doi.org/10.1016/j.memsci.2006.07.041 - Y. Ma, J. Wang, and T. Tsuru, "Pervaporation of water/ethanol mixtures through microporous silica membranes", Sep. Purif. Technol., 66, 479 (2009). https://doi.org/10.1016/j.seppur.2009.02.005
- J. Wang and T. Tsuru, "Cobalt-doped silica membranes for pervaporation dehydration of ethanol/water solutions", J. Membr. Sci., 369, 13 (2011). https://doi.org/10.1016/j.memsci.2010.10.062
- T. Tsuru, M. Narita, R. Shinagawa, and T. Yoshioka, "Nanoporous titania membranes for permeation and filteration of organic solutions", Desalination, 233, 1 (2008). https://doi.org/10.1016/j.desal.2007.09.021
-
T. Tsuru, T. Nakasuji, M. Oka, M. Kanezashi, and T. Yoshioka, "Preparation of hydrophobic nanoporous methylated
$SiO_2$ membranes and application to nanofiltration of hexane solutions", J. Membr. Sci., 384, 149 (2011). https://doi.org/10.1016/j.memsci.2011.09.018 - Fuji-Keizai, "高機能 分離膜 關聯 技術.市場 全貌と 將來豫測" (2009).
- J. Y. Park and G. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic microfiltration and activated carbon adsorption : Effect of organic materials in N2-backflushing", Membrane Journal, 19(3), 203 (2009).
- H. C. Lee and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic microfiltration and activated carbon adsorption : Effect of GAC packing fraction", Membrane Journal, 18(3), 191 (2008).
- H. C. Lee and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic microfiltration and activated carbon adsorption : Effect of water-back-flushing time and period", Membrane Journal, 19(1), 7 (2009).