Control of Nano-Structure of Ceramic Membrane and Its Application

세라믹 멤브레인의 나노구조 제어 및 응용

  • Lee, Hye-Ryeon (Resource Separation & Recovery Research Group, Korea Research Institute of Chemical Technology) ;
  • Seo, Bong-Kuk (Resource Separation & Recovery Research Group, Korea Research Institute of Chemical Technology) ;
  • Choi, Yong-Jin (Department of Chemical Engineering, Dong-Eui University)
  • 이혜련 (한국화학연구원 자원분리회수연구그룹) ;
  • 서봉국 (한국화학연구원 자원분리회수연구그룹) ;
  • 최용진 (동의대학교 화학공학과)
  • Received : 2012.04.15
  • Accepted : 2012.04.27
  • Published : 2012.04.30

Abstract

Amorphous ceramic membranes have been developed for gas phase separation and liquid phase separation (water treatment, wastewater treatment and separation of organic solvent or compounds) because of their thermal stability and solvent resistance. In this paper, ceramic membranes were categorized by membrane pore size and materials, and summarized for hydrogen separation, carbon dioxide separation, membrane reactor, pervaporation and water treatment with membrane structure and properties.

내열성, 용매 저항성의 특징을 갖는 다공성 세라믹 소재를 이용한 무기 멤브레인이 기체분리(수소 분리, 이산화탄소 분리 등), 액체 분리(수처리, 폐수처리, 유기용매 분리 등) 등 여러 가지 분야로 그 응용이 확대되고 있다. 본 논문에서는 다공성 세라믹 멤브레인의 소재, 제조 방법에 따른 멤브레인의 구조 제어 및 성능 평가에 관한 연구를 소개하고, 멤브레인의 세공 크기에 따른 구조, 멤브레인의 특성을 이용한 여러 가지 기체 분리 및 액체 분리에 관한 연구 동향을 정리하였다.

Keywords

References

  1. S. P. Nunes and K.-V. Peinemann, "membranes technology in the chemical industry", Elsevier, Wiley-VCH, Germany (2006).
  2. J. Xiao and J. Wei, "Diffusion mechanism of hydrocarbons in zeolites-I. Theory", Chem. Eng. Sci., 47, 1123 (1992). https://doi.org/10.1016/0009-2509(92)80236-6
  3. A. B. Shelekhin, A. G. Dixon, and Y. H. Ma, "Theory of gas diffusion and permeation in inorganic molecular-sieve membranes", AIChE. J., 41, 58 (1995). https://doi.org/10.1002/aic.690410107
  4. M. Mulder, "Basic Principles of Membrane technology", Kluwer Academic Publishers, Dordrecht (1996).
  5. A. J. Burggraaf and L. Cot, "Fundermentals of inorganic membrane science and technology", Elesvier, Amsterdam (1996).
  6. T. Tsuru, "Nano/subnano-tuning of porous ceramic membranes for molecular separation", J. Sol-Gel Sci. Technol., 46, 349 (2008). https://doi.org/10.1007/s10971-008-1712-5
  7. C. J. Brinker and G. W. Scherer, "Sol-Gel Science", Academic Press Inc. San Diego (1990).
  8. B. N. Nair, K. Keizer, W. J. Elferink, M. J. Gilde, H. Verweij, and A. J. Burggraaf, "Synthesis, characterisation and gas permeation studies on microporous silica and alumina-silica membranes for separation of propane and propylene", J. Membr. Sci., 116, 161 (1996). https://doi.org/10.1016/0376-7388(96)00036-1
  9. R. S. A. de Lange, K. Keizer, and A. J. Burggraaf, "Analysis and theory of gas transport in microporous sol-gel derived ceramic membranes", J. Membr. Sci., 104, 81 (1995). https://doi.org/10.1016/0376-7388(95)00014-4
  10. R. S. A. de Lange, K. Keizer, and A. J. Burggraaf, "Aging and stability of microporous sol-gel-modified ceramic membranes", Ind. Eng. Chem. Res., 34, 3838 (1995). https://doi.org/10.1021/ie00038a022
  11. R. M. de Vos, W. F. Maier, and H. Verweij, "Hydrophobic silica membranes for gas separation", J. Membr. Sci., 158, 277 (1999). https://doi.org/10.1016/S0376-7388(99)00035-6
  12. M. C. Duke, J. C. D. da Costa, G. Q. Lu, M. Petch, and P. Gray, "Carbonised template molecular sieving silica membranes in fuel processing systems : permeation, hydrostability and regeneration", J. Membr. Sci., 241, 325 (2004). https://doi.org/10.1016/j.memsci.2004.06.004
  13. J. Campaniello, C. W. R. Engelen, W. G. Haije, P. P. A. C. Pex, and J. F. Vente, "Long-term pervaporation performance of microporous methylated silica membranes", Chem. Commun., 40, 834 (2004).
  14. H. L. Castricum, A. Sah, R. Kreiter, D. H. A. Blank, J. F. Vente, and J. E. ten Elshof, "Hydrothermally stable molecular separation membranes from organically linked silica", J. Mater. Chem., 18, 2150 (2008). https://doi.org/10.1039/b801972j
  15. H. L. Castricum, R. Kreiter, H. M. van Veen, D. H. A. Blank, J. F. Vente, and J. E. ten Elshof, "High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability", J. Membr. Sci., 324, 111 (2008). https://doi.org/10.1016/j.memsci.2008.07.014
  16. R. Kreiter, M. D. A. Rietkerk, H. L. Castricum, H. M. van Veen, J. E. ten Elshof, and J. F. Vente, "Stable hybrid silica nanosieve membranes for the dehydration of lower alcohols", Chem. Sus. Chem., 2, 158 (2009). https://doi.org/10.1002/cssc.200800198
  17. N. K. Raman and C. J. Brinker, "Organic "template" approach to molecular sieving silica membranes", J. Membr. Sci., 105, 273 (1995). https://doi.org/10.1016/0376-7388(95)00067-M
  18. G. Gao, Y. Lu, L. Delattre, C. J. Brinker, and G. P. Lopez, "Amorphous silica molecular sieving membranes by sol-gel processing", Adv. Mater., 8, 588 (1996). https://doi.org/10.1002/adma.19960080713
  19. K. Kusakabe, S. Sakamoto, T. Saie, and S. Morooka, "Pore structure of silica membranes formed by a sol-gel technique using tetraethoxysilane and alkyltriethoxysilanes", Sep. Purif. Technol., 16, 139 (1999). https://doi.org/10.1016/S1383-5866(98)00120-8
  20. M. Kanezashi, K. Yada, T. Yoshioka, and T. Tsuru, "Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability", J. Am. Chem. Soc., 131, 414 (2009) https://doi.org/10.1021/ja806762q
  21. M. Kanezashi, K. Yada, T. Yoshioka, and T. Tsuru, Organic-inorganic hybrid silica membranes with controlled silica network size: preparation and gas permeation characteristics, J. Membr. Sci., 348, 310 (2010). https://doi.org/10.1016/j.memsci.2009.11.014
  22. M. Kanezashi, M. Kawano, T. Yoshioka, and T. Tsuru, "Organic-inorganic hybrid silica membranes with controlled silica network size for propylene/propane separation", Ind. Eng. Chem. Res., 51, 944 (2011).
  23. H. R. Lee, M. Kanezashi, Y. Shimomura, T. Yoshioka, and T. Tsuru, "Evaluation and fabrication of pore-size-tuned silica membranes with tetraethoxydimethyl disiloxane for gas separation", AIChE J., 57, 2755 (2011). https://doi.org/10.1002/aic.12501
  24. H. R. Lee, T. Shibata, M. Kanezashi, T. Mizumo, J. Ohshita, and T. Tsuru, "Pore-size-controlled silica membranes with disiloxane alkoxides for gas separation", J. Membr. Sci., 383, 152 (2011). https://doi.org/10.1016/j.memsci.2011.08.046
  25. T. T. Sorita, S. Shiga, K. Ikuta, Y. Egashira, and H. Komiyama, "The formation mechanism and step coverage quality of tetraethylorthosilicate-silicon dioxide films studied by the micro/macrocavity method", J. Electrochem. Soc., 140, 2952 (1993). https://doi.org/10.1149/1.2220938
  26. G. R. Gavalas, C. E. Megiris, and S. W. Nam, "Deposition of $H_2$-permselective silica films", Chem. Eng. Sci., 44, 1829 (1989). https://doi.org/10.1016/0009-2509(89)85125-5
  27. S. Jiang, Y. Yan, and G. R. Gavalas, "Temporaty carbon barriers in the preparation of $H_2$-selective silica membranes", J. Membr. Sci., 103, 211 (1995). https://doi.org/10.1016/0376-7388(95)00004-V
  28. S. Kim and G. R. Gavalas, "Preparation of $H_2$ permselective silica membranes by alternating reactant vapor deposition", Ind. Eng. Chem. Res., 34, 168 (1995). https://doi.org/10.1021/ie00040a016
  29. S. Morooka, S. Yan, K. Kusakabe, and Y. Akiyama, "Formation of hydrogen-permselective $SiO_2$ membrane in macropores of $\alpha$-alumina support tube by thermal decomposition of TEOS", J. Membr. Sci., 101, 89 (1995). https://doi.org/10.1016/0376-7388(94)00293-8
  30. B.-K. Sea, K. Kusakabe, and S. Morooka, "Hydrogen recovery from a $H_2-H_2O-HBr$ mixture utilizing silica-based membranes at elevated temperatures. 2. Calculation of exergy losses in $H_2$ separation using inorganic membranes", Ind. Eng. Chem. Res., 37, 2509 (1998). https://doi.org/10.1021/ie980173l
  31. B.-K. Sea, K. Kusakabe, and S. Morooka, "Pore size control and gas permation kinetics of silica membranes by pyrolysis of phenyl-substituted ethoxysilanes with cross-flow through a porous support wall", J. Membr. Sci., 130, 41 (1997). https://doi.org/10.1016/S0376-7388(97)00002-1
  32. S.-E. Nam and K.-H. Lee, "A study on the palladium/nickel composite membrane by vacuum electrodeposition", J. Membr. Sci., 170, 91 (2000). https://doi.org/10.1016/S0376-7388(99)00359-2
  33. S. Jung, K. Kusakabe, S. Morooka, and S. Kim, "Effects of co-existing hydrocarbons on hydrogen permeation through a palladium membrane" J. Membr. Sci., 170, 53 (2000). https://doi.org/10.1016/S0376-7388(99)00357-9
  34. Y. Gu and S. T. Oyama, "Ultrathin, hydrogenselective silica membranes depositied on alumina-graded structures prepared from size-controlled boehmite sols", J. Membr. Sci., 306, 216 (2007). https://doi.org/10.1016/j.memsci.2007.08.045
  35. Y. Gu, P. Hacarlioglu, and S. T. Oyama, "Hydrothermally stable silica-alumina composite membranes for hydrogen separation", J. Membr. Sci., 310, 28 (2008). https://doi.org/10.1016/j.memsci.2007.10.025
  36. P. Hacarlioglu, D. Lee, G. V. Gibbs, and S. T. Oyama, "Activation energies for permeation of He and $H_2$ through silica membranes: An ab initio calculation study", J. Membr. Sci., 313, 277 (2008). https://doi.org/10.1016/j.memsci.2008.01.018
  37. Y. Gu and S. T. Oyama, "Permeation properites and hydrothermal stability of silica-titania membranes supported on porous alumina substrates", J. Membr. Sci., 345, 267 (2009). https://doi.org/10.1016/j.memsci.2009.09.009
  38. Z. A. E. P. Vroon, K. Keizer, M. J. Gilde, H. Verweij, and A. J. Burggraaf, "Transport properties of alkanes through ceramic thin zeolite MFI membrane", J. Membr. Sci., 113, 293 (1996). https://doi.org/10.1016/0376-7388(95)00128-X
  39. C. Bai, M.-D. Jia, J. L. Falconer, and R. D. Noble, "Preparation and separation properties of silicalite composite membranes", J. Membr. Sci., 105, 79 (1995). https://doi.org/10.1016/0376-7388(95)00049-I
  40. J. E. Lewis, G. R. Gavalas, and M. E. Davis, "Permeation studies on oriented single-crystal ferrierite membranes", AIChE J., 43, 83 (1997). https://doi.org/10.1002/aic.690430111
  41. M. C. Lovallo and M. Tsapatsis, "Preferentially oriented submicron silicalite membranes", AIChE J., 42, 3020 (1996). https://doi.org/10.1002/aic.690421104
  42. F. Kapteijn, W. J. W. Bakker, G. Zheng, J. Poppe, and J. A. Moulijn, "Permeation and separation of light hydrocarbons through a silicalite-1 membrane. Application of the generalized Maxwell-stefan equations", Chem. Eng. J., 57, 145 (1995).
  43. W. J. W. Bakker, F. Kapteijn, J. Poppe, and J. A. Moulijn, "Permeation characteristics of a metal-supported silicalite-1 zeolite membrane", J. Membr. Sci., 117, 57 (1996). https://doi.org/10.1016/0376-7388(96)00035-X
  44. Japan Fine Ceramics Center: Report on Carbon Dioxide Recovery and Utilizing Technology (1997).
  45. C.-Y. Tsai, S.-Y. Tam, Y. Lu, and C. J. Brinker, "Dual-layer asymmetric microporous silica membranes", J. Membr. Sci., 169, 255 (2000). https://doi.org/10.1016/S0376-7388(99)00343-9
  46. C. J. Brinker, T. L. Ward, R. Sehgal, N. K. Raman, S. L. Hietala, D. M. Smith, D.-W. Hua, and T. J. Headly, "Ultramicroporous" silica-based supported inorganic membranes", J. Membr. Sci., 77, 165 (1993). https://doi.org/10.1016/0376-7388(93)85067-7
  47. R. J. R. Uhlhorn, K. Keizer, and A. J. Burggraaf, "Gas transport and separation with ceramic membranes. Part I. Multilayer diffusion and capillary condensation", J. Membr. Sci., 66, 259 (1992). https://doi.org/10.1016/0376-7388(92)87016-Q
  48. Y. K. Cho, K. Han, and K. H. Lee, "Separation of $CO_2$ by modified ${\gamma}-Al_2O_3$ membranes at high temperature", J. Membr. Sci., 104, 219 (1995). https://doi.org/10.1016/0376-7388(95)00033-9
  49. S. H. Hyun, S. Y. Jo, and B. S. Kang, "Surface modification of $\gamma$-alumina by silane coupling for $CO_2$ separation", J. Membr. Sci., 120, 197 (1996). https://doi.org/10.1016/0376-7388(96)00160-3
  50. T. Okui, Y. Saito, T. Okubo, and M. Sadakata, "Gas permeation of porous organic/inorganic hybrid membranes", J. Sol-Gel Sci. Tech., 5, 127 (1995). https://doi.org/10.1007/BF00487728
  51. J. Hayashi, M. Yamamoto, K. Kusakabe, and S. Morooka, "Effect of oxidation on gas permeation of carbon molecular sieving membranes based on BPDA-pp'ODA polyimide", Ind. Eng. Chem. Res., 36, 2134 (1997). https://doi.org/10.1021/ie960767t
  52. T. Suzuki and Y. Yamada, "Characterization of 6FDA-based hyperbranched and linear polyimidesilica hybrid membranes by gas permeation and 129Xe NMR measurements", J. Polym., Sci., B: Polymer Physics, 44, 291 (2006). https://doi.org/10.1002/polb.20692
  53. K. M. Steel and W. J. Koros, "An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials", Carbon, 43, 1843 (2005). https://doi.org/10.1016/j.carbon.2005.02.028
  54. K. Kusakabe, T. Kuroda, A. Murata, and S. Morooka, "Formation of a Y-type zeolite membrane on a porous $\alpha$-alumina tube for gas separation", Ind. Eng. Chem. Res., 36, 649 (1997). https://doi.org/10.1021/ie960519x
  55. S. Li, G. Alvarado, R. D. Noble, and J. L. Falconer, "Improved SAPO-34 membranes for $CO_2/CH_4$ separations", Adv. Mater., 18, 2601 (2006). https://doi.org/10.1002/adma.200601147
  56. Y. Cui, H. Kita, and K. Okamoto, "Preparation and gas separation performance of zeolite T membrane", J. Mater. Chem., 14, 924 (2004). https://doi.org/10.1039/b311881a
  57. S. Himeno, T. Tomita, K. Suzuki, and S. Yoshida, "Characterization and selectivity for membrane and carbon dioxide adsorption on the all-silica DD3R zeolite", Microporous Mesoporous Materials, 98, 62 (2007). https://doi.org/10.1016/j.micromeso.2006.05.018
  58. S. Himeno, T. Tomita, K. Suzuki, K. Nakayama, and S. Yoshida, "Synthesis and permeation properties of a DDR-type zeolite membrane for separation of $CO_2/CH_4$ gaseous mixtures", Ind. Eng. Chem. Res., 46, 6989 (2007). https://doi.org/10.1021/ie061682n
  59. K. Aoki, K. Kusakabe, and S. Morooka, "Separation of gases with an A-type zeolite membrane", Ind. Eng. Chem. Res., 39, 2245 (2000). https://doi.org/10.1021/ie990902c
  60. X. Gu, J. Dong, and T. M. Nenoff, "Synthesis of defect-free FAU-type zeolite membranes and separation for dry and moist $CO_2/CH_4$ mixtures", Ind. Eng. Chem. Res., 44, 937 (2005). https://doi.org/10.1021/ie049263i
  61. J. C. Poshusta, R. D. Noble, and J. L. Falconer, "Characterization of SAPO-34 membranes by water adsorption", J. Membr. Sci., 186, 25 (2001). https://doi.org/10.1016/S0376-7388(00)00666-9
  62. M. P. Bernal, J. Coronas, M. Menendez, and J. Santamaria, "Separation of $CO_2/N_2$ mixtures using MFI-type zeolite membranes", AIChE J., 50, 127 (2004). https://doi.org/10.1002/aic.10012
  63. A. K. Prabhu, A. Liu, L. G. Lovell, and S. T. Oyama, "Modeling of the membrane reforming reaction in hydrogen selective membrane reactors", J. Membr. Sci., 177, 83 (2000). https://doi.org/10.1016/S0376-7388(00)00449-X
  64. M. L. Bosko, J. F. Munera, E. A. Lombardo, and L. M. Cornaglia, "Dry reforming of methane in membrane reactors using Pd and Pd-Ag composite membranes on a NaA zeolite modified porous stainless steel support", J. Membr. Sci., 364, 17 (2010). https://doi.org/10.1016/j.memsci.2010.07.039
  65. T. Tsuru, T. Morita, H. Shintani, T. Yoshioka, and M. Asaeda, "Membrane reactor performance of steam reforming of methane using hydrogen-permselective catalytic $SiO_2$ membranes", J. Membr. Sci., 316, 53 (2008). https://doi.org/10.1016/j.memsci.2007.10.057
  66. G. Li, M. Kanezashi, and T. Tsuru, "Highly enhanced ammonia decomposition in a bimodal catalytic membrane reactor for COx-free hydrogen production", Catalysis Comm., 15, 60 (2011). https://doi.org/10.1016/j.catcom.2011.08.011
  67. J. Yang, T. Yoshioka, T. Tsuru, and M. Asaeda, "Pervaporation characteristics of aqueous-organic solutions with microporous $SiO_2-ZrO_2$ membranes: Experimental study on separation mechanism", J. Membr. Sci., 284, 205 (2006). https://doi.org/10.1016/j.memsci.2006.07.041
  68. Y. Ma, J. Wang, and T. Tsuru, "Pervaporation of water/ethanol mixtures through microporous silica membranes", Sep. Purif. Technol., 66, 479 (2009). https://doi.org/10.1016/j.seppur.2009.02.005
  69. J. Wang and T. Tsuru, "Cobalt-doped silica membranes for pervaporation dehydration of ethanol/water solutions", J. Membr. Sci., 369, 13 (2011). https://doi.org/10.1016/j.memsci.2010.10.062
  70. T. Tsuru, M. Narita, R. Shinagawa, and T. Yoshioka, "Nanoporous titania membranes for permeation and filteration of organic solutions", Desalination, 233, 1 (2008). https://doi.org/10.1016/j.desal.2007.09.021
  71. T. Tsuru, T. Nakasuji, M. Oka, M. Kanezashi, and T. Yoshioka, "Preparation of hydrophobic nanoporous methylated $SiO_2$ membranes and application to nanofiltration of hexane solutions", J. Membr. Sci., 384, 149 (2011). https://doi.org/10.1016/j.memsci.2011.09.018
  72. Fuji-Keizai, "高機能 分離膜 關聯 技術.市場 全貌と 將來豫測" (2009).
  73. J. Y. Park and G. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic microfiltration and activated carbon adsorption : Effect of organic materials in N2-backflushing", Membrane Journal, 19(3), 203 (2009).
  74. H. C. Lee and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic microfiltration and activated carbon adsorption : Effect of GAC packing fraction", Membrane Journal, 18(3), 191 (2008).
  75. H. C. Lee and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic microfiltration and activated carbon adsorption : Effect of water-back-flushing time and period", Membrane Journal, 19(1), 7 (2009).