Browse > Article

Control of Nano-Structure of Ceramic Membrane and Its Application  

Lee, Hye-Ryeon (Resource Separation & Recovery Research Group, Korea Research Institute of Chemical Technology)
Seo, Bong-Kuk (Resource Separation & Recovery Research Group, Korea Research Institute of Chemical Technology)
Choi, Yong-Jin (Department of Chemical Engineering, Dong-Eui University)
Publication Information
Membrane Journal / v.22, no.2, 2012 , pp. 77-94 More about this Journal
Abstract
Amorphous ceramic membranes have been developed for gas phase separation and liquid phase separation (water treatment, wastewater treatment and separation of organic solvent or compounds) because of their thermal stability and solvent resistance. In this paper, ceramic membranes were categorized by membrane pore size and materials, and summarized for hydrogen separation, carbon dioxide separation, membrane reactor, pervaporation and water treatment with membrane structure and properties.
Keywords
ceramic membrane; gas separation; nano-pore control; membrane reactor; water treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. P. Nunes and K.-V. Peinemann, "membranes technology in the chemical industry", Elsevier, Wiley-VCH, Germany (2006).
2 J. Xiao and J. Wei, "Diffusion mechanism of hydrocarbons in zeolites-I. Theory", Chem. Eng. Sci., 47, 1123 (1992).   DOI   ScienceOn
3 A. B. Shelekhin, A. G. Dixon, and Y. H. Ma, "Theory of gas diffusion and permeation in inorganic molecular-sieve membranes", AIChE. J., 41, 58 (1995).   DOI   ScienceOn
4 M. Mulder, "Basic Principles of Membrane technology", Kluwer Academic Publishers, Dordrecht (1996).
5 A. J. Burggraaf and L. Cot, "Fundermentals of inorganic membrane science and technology", Elesvier, Amsterdam (1996).
6 T. Tsuru, "Nano/subnano-tuning of porous ceramic membranes for molecular separation", J. Sol-Gel Sci. Technol., 46, 349 (2008).   DOI   ScienceOn
7 C. J. Brinker and G. W. Scherer, "Sol-Gel Science", Academic Press Inc. San Diego (1990).
8 B. N. Nair, K. Keizer, W. J. Elferink, M. J. Gilde, H. Verweij, and A. J. Burggraaf, "Synthesis, characterisation and gas permeation studies on microporous silica and alumina-silica membranes for separation of propane and propylene", J. Membr. Sci., 116, 161 (1996).   DOI   ScienceOn
9 R. S. A. de Lange, K. Keizer, and A. J. Burggraaf, "Analysis and theory of gas transport in microporous sol-gel derived ceramic membranes", J. Membr. Sci., 104, 81 (1995).   DOI   ScienceOn
10 R. S. A. de Lange, K. Keizer, and A. J. Burggraaf, "Aging and stability of microporous sol-gel-modified ceramic membranes", Ind. Eng. Chem. Res., 34, 3838 (1995).   DOI   ScienceOn
11 R. M. de Vos, W. F. Maier, and H. Verweij, "Hydrophobic silica membranes for gas separation", J. Membr. Sci., 158, 277 (1999).   DOI   ScienceOn
12 M. C. Duke, J. C. D. da Costa, G. Q. Lu, M. Petch, and P. Gray, "Carbonised template molecular sieving silica membranes in fuel processing systems : permeation, hydrostability and regeneration", J. Membr. Sci., 241, 325 (2004).   DOI   ScienceOn
13 J. Campaniello, C. W. R. Engelen, W. G. Haije, P. P. A. C. Pex, and J. F. Vente, "Long-term pervaporation performance of microporous methylated silica membranes", Chem. Commun., 40, 834 (2004).
14 H. L. Castricum, A. Sah, R. Kreiter, D. H. A. Blank, J. F. Vente, and J. E. ten Elshof, "Hydrothermally stable molecular separation membranes from organically linked silica", J. Mater. Chem., 18, 2150 (2008).   DOI   ScienceOn
15 H. L. Castricum, R. Kreiter, H. M. van Veen, D. H. A. Blank, J. F. Vente, and J. E. ten Elshof, "High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability", J. Membr. Sci., 324, 111 (2008).   DOI   ScienceOn
16 R. Kreiter, M. D. A. Rietkerk, H. L. Castricum, H. M. van Veen, J. E. ten Elshof, and J. F. Vente, "Stable hybrid silica nanosieve membranes for the dehydration of lower alcohols", Chem. Sus. Chem., 2, 158 (2009).   DOI   ScienceOn
17 N. K. Raman and C. J. Brinker, "Organic "template" approach to molecular sieving silica membranes", J. Membr. Sci., 105, 273 (1995).   DOI   ScienceOn
18 G. Gao, Y. Lu, L. Delattre, C. J. Brinker, and G. P. Lopez, "Amorphous silica molecular sieving membranes by sol-gel processing", Adv. Mater., 8, 588 (1996).   DOI   ScienceOn
19 K. Kusakabe, S. Sakamoto, T. Saie, and S. Morooka, "Pore structure of silica membranes formed by a sol-gel technique using tetraethoxysilane and alkyltriethoxysilanes", Sep. Purif. Technol., 16, 139 (1999).   DOI   ScienceOn
20 M. Kanezashi, K. Yada, T. Yoshioka, and T. Tsuru, "Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability", J. Am. Chem. Soc., 131, 414 (2009)   DOI   ScienceOn
21 M. Kanezashi, K. Yada, T. Yoshioka, and T. Tsuru, Organic-inorganic hybrid silica membranes with controlled silica network size: preparation and gas permeation characteristics, J. Membr. Sci., 348, 310 (2010).   DOI   ScienceOn
22 M. Kanezashi, M. Kawano, T. Yoshioka, and T. Tsuru, "Organic-inorganic hybrid silica membranes with controlled silica network size for propylene/propane separation", Ind. Eng. Chem. Res., 51, 944 (2011).
23 H. R. Lee, M. Kanezashi, Y. Shimomura, T. Yoshioka, and T. Tsuru, "Evaluation and fabrication of pore-size-tuned silica membranes with tetraethoxydimethyl disiloxane for gas separation", AIChE J., 57, 2755 (2011).   DOI   ScienceOn
24 H. R. Lee, T. Shibata, M. Kanezashi, T. Mizumo, J. Ohshita, and T. Tsuru, "Pore-size-controlled silica membranes with disiloxane alkoxides for gas separation", J. Membr. Sci., 383, 152 (2011).   DOI   ScienceOn
25 T. T. Sorita, S. Shiga, K. Ikuta, Y. Egashira, and H. Komiyama, "The formation mechanism and step coverage quality of tetraethylorthosilicate-silicon dioxide films studied by the micro/macrocavity method", J. Electrochem. Soc., 140, 2952 (1993).   DOI   ScienceOn
26 G. R. Gavalas, C. E. Megiris, and S. W. Nam, "Deposition of $H_2$-permselective silica films", Chem. Eng. Sci., 44, 1829 (1989).   DOI   ScienceOn
27 S. Jiang, Y. Yan, and G. R. Gavalas, "Temporaty carbon barriers in the preparation of $H_2$-selective silica membranes", J. Membr. Sci., 103, 211 (1995).   DOI   ScienceOn
28 B.-K. Sea, K. Kusakabe, and S. Morooka, "Hydrogen recovery from a $H_2-H_2O-HBr$ mixture utilizing silica-based membranes at elevated temperatures. 2. Calculation of exergy losses in $H_2$ separation using inorganic membranes", Ind. Eng. Chem. Res., 37, 2509 (1998).   DOI   ScienceOn
29 S. Kim and G. R. Gavalas, "Preparation of $H_2$ permselective silica membranes by alternating reactant vapor deposition", Ind. Eng. Chem. Res., 34, 168 (1995).   DOI   ScienceOn
30 S. Morooka, S. Yan, K. Kusakabe, and Y. Akiyama, "Formation of hydrogen-permselective $SiO_2$ membrane in macropores of $\alpha$-alumina support tube by thermal decomposition of TEOS", J. Membr. Sci., 101, 89 (1995).   DOI   ScienceOn
31 B.-K. Sea, K. Kusakabe, and S. Morooka, "Pore size control and gas permation kinetics of silica membranes by pyrolysis of phenyl-substituted ethoxysilanes with cross-flow through a porous support wall", J. Membr. Sci., 130, 41 (1997).   DOI   ScienceOn
32 S.-E. Nam and K.-H. Lee, "A study on the palladium/nickel composite membrane by vacuum electrodeposition", J. Membr. Sci., 170, 91 (2000).   DOI   ScienceOn
33 S. Jung, K. Kusakabe, S. Morooka, and S. Kim, "Effects of co-existing hydrocarbons on hydrogen permeation through a palladium membrane" J. Membr. Sci., 170, 53 (2000).   DOI   ScienceOn
34 Y. Gu and S. T. Oyama, "Ultrathin, hydrogenselective silica membranes depositied on alumina-graded structures prepared from size-controlled boehmite sols", J. Membr. Sci., 306, 216 (2007).   DOI   ScienceOn
35 Y. Gu, P. Hacarlioglu, and S. T. Oyama, "Hydrothermally stable silica-alumina composite membranes for hydrogen separation", J. Membr. Sci., 310, 28 (2008).   DOI   ScienceOn
36 C. Bai, M.-D. Jia, J. L. Falconer, and R. D. Noble, "Preparation and separation properties of silicalite composite membranes", J. Membr. Sci., 105, 79 (1995).   DOI   ScienceOn
37 P. Hacarlioglu, D. Lee, G. V. Gibbs, and S. T. Oyama, "Activation energies for permeation of He and $H_2$ through silica membranes: An ab initio calculation study", J. Membr. Sci., 313, 277 (2008).   DOI   ScienceOn
38 Y. Gu and S. T. Oyama, "Permeation properites and hydrothermal stability of silica-titania membranes supported on porous alumina substrates", J. Membr. Sci., 345, 267 (2009).   DOI   ScienceOn
39 Z. A. E. P. Vroon, K. Keizer, M. J. Gilde, H. Verweij, and A. J. Burggraaf, "Transport properties of alkanes through ceramic thin zeolite MFI membrane", J. Membr. Sci., 113, 293 (1996).   DOI   ScienceOn
40 J. E. Lewis, G. R. Gavalas, and M. E. Davis, "Permeation studies on oriented single-crystal ferrierite membranes", AIChE J., 43, 83 (1997).   DOI   ScienceOn
41 M. C. Lovallo and M. Tsapatsis, "Preferentially oriented submicron silicalite membranes", AIChE J., 42, 3020 (1996).   DOI   ScienceOn
42 F. Kapteijn, W. J. W. Bakker, G. Zheng, J. Poppe, and J. A. Moulijn, "Permeation and separation of light hydrocarbons through a silicalite-1 membrane. Application of the generalized Maxwell-stefan equations", Chem. Eng. J., 57, 145 (1995).
43 W. J. W. Bakker, F. Kapteijn, J. Poppe, and J. A. Moulijn, "Permeation characteristics of a metal-supported silicalite-1 zeolite membrane", J. Membr. Sci., 117, 57 (1996).   DOI   ScienceOn
44 Japan Fine Ceramics Center: Report on Carbon Dioxide Recovery and Utilizing Technology (1997).
45 Y. K. Cho, K. Han, and K. H. Lee, "Separation of $CO_2$ by modified ${\gamma}-Al_2O_3$ membranes at high temperature", J. Membr. Sci., 104, 219 (1995).   DOI   ScienceOn
46 C.-Y. Tsai, S.-Y. Tam, Y. Lu, and C. J. Brinker, "Dual-layer asymmetric microporous silica membranes", J. Membr. Sci., 169, 255 (2000).   DOI   ScienceOn
47 C. J. Brinker, T. L. Ward, R. Sehgal, N. K. Raman, S. L. Hietala, D. M. Smith, D.-W. Hua, and T. J. Headly, "Ultramicroporous" silica-based supported inorganic membranes", J. Membr. Sci., 77, 165 (1993).   DOI   ScienceOn
48 R. J. R. Uhlhorn, K. Keizer, and A. J. Burggraaf, "Gas transport and separation with ceramic membranes. Part I. Multilayer diffusion and capillary condensation", J. Membr. Sci., 66, 259 (1992).   DOI   ScienceOn
49 S. H. Hyun, S. Y. Jo, and B. S. Kang, "Surface modification of $\gamma$-alumina by silane coupling for $CO_2$ separation", J. Membr. Sci., 120, 197 (1996).   DOI   ScienceOn
50 T. Okui, Y. Saito, T. Okubo, and M. Sadakata, "Gas permeation of porous organic/inorganic hybrid membranes", J. Sol-Gel Sci. Tech., 5, 127 (1995).   DOI   ScienceOn
51 J. Hayashi, M. Yamamoto, K. Kusakabe, and S. Morooka, "Effect of oxidation on gas permeation of carbon molecular sieving membranes based on BPDA-pp'ODA polyimide", Ind. Eng. Chem. Res., 36, 2134 (1997).   DOI   ScienceOn
52 T. Suzuki and Y. Yamada, "Characterization of 6FDA-based hyperbranched and linear polyimidesilica hybrid membranes by gas permeation and 129Xe NMR measurements", J. Polym., Sci., B: Polymer Physics, 44, 291 (2006).   DOI   ScienceOn
53 K. M. Steel and W. J. Koros, "An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials", Carbon, 43, 1843 (2005).   DOI   ScienceOn
54 S. Himeno, T. Tomita, K. Suzuki, and S. Yoshida, "Characterization and selectivity for membrane and carbon dioxide adsorption on the all-silica DD3R zeolite", Microporous Mesoporous Materials, 98, 62 (2007).   DOI   ScienceOn
55 K. Kusakabe, T. Kuroda, A. Murata, and S. Morooka, "Formation of a Y-type zeolite membrane on a porous $\alpha$-alumina tube for gas separation", Ind. Eng. Chem. Res., 36, 649 (1997).   DOI   ScienceOn
56 S. Li, G. Alvarado, R. D. Noble, and J. L. Falconer, "Improved SAPO-34 membranes for $CO_2/CH_4$ separations", Adv. Mater., 18, 2601 (2006).   DOI   ScienceOn
57 Y. Cui, H. Kita, and K. Okamoto, "Preparation and gas separation performance of zeolite T membrane", J. Mater. Chem., 14, 924 (2004).   DOI   ScienceOn
58 S. Himeno, T. Tomita, K. Suzuki, K. Nakayama, and S. Yoshida, "Synthesis and permeation properties of a DDR-type zeolite membrane for separation of $CO_2/CH_4$ gaseous mixtures", Ind. Eng. Chem. Res., 46, 6989 (2007).   DOI   ScienceOn
59 K. Aoki, K. Kusakabe, and S. Morooka, "Separation of gases with an A-type zeolite membrane", Ind. Eng. Chem. Res., 39, 2245 (2000).   DOI   ScienceOn
60 X. Gu, J. Dong, and T. M. Nenoff, "Synthesis of defect-free FAU-type zeolite membranes and separation for dry and moist $CO_2/CH_4$ mixtures", Ind. Eng. Chem. Res., 44, 937 (2005).   DOI   ScienceOn
61 J. C. Poshusta, R. D. Noble, and J. L. Falconer, "Characterization of SAPO-34 membranes by water adsorption", J. Membr. Sci., 186, 25 (2001).   DOI   ScienceOn
62 M. P. Bernal, J. Coronas, M. Menendez, and J. Santamaria, "Separation of $CO_2/N_2$ mixtures using MFI-type zeolite membranes", AIChE J., 50, 127 (2004).   DOI   ScienceOn
63 G. Li, M. Kanezashi, and T. Tsuru, "Highly enhanced ammonia decomposition in a bimodal catalytic membrane reactor for COx-free hydrogen production", Catalysis Comm., 15, 60 (2011).   DOI   ScienceOn
64 A. K. Prabhu, A. Liu, L. G. Lovell, and S. T. Oyama, "Modeling of the membrane reforming reaction in hydrogen selective membrane reactors", J. Membr. Sci., 177, 83 (2000).   DOI   ScienceOn
65 M. L. Bosko, J. F. Munera, E. A. Lombardo, and L. M. Cornaglia, "Dry reforming of methane in membrane reactors using Pd and Pd-Ag composite membranes on a NaA zeolite modified porous stainless steel support", J. Membr. Sci., 364, 17 (2010).   DOI   ScienceOn
66 T. Tsuru, T. Morita, H. Shintani, T. Yoshioka, and M. Asaeda, "Membrane reactor performance of steam reforming of methane using hydrogen-permselective catalytic $SiO_2$ membranes", J. Membr. Sci., 316, 53 (2008).   DOI   ScienceOn
67 J. Yang, T. Yoshioka, T. Tsuru, and M. Asaeda, "Pervaporation characteristics of aqueous-organic solutions with microporous $SiO_2-ZrO_2$ membranes: Experimental study on separation mechanism", J. Membr. Sci., 284, 205 (2006).   DOI   ScienceOn
68 Y. Ma, J. Wang, and T. Tsuru, "Pervaporation of water/ethanol mixtures through microporous silica membranes", Sep. Purif. Technol., 66, 479 (2009).   DOI   ScienceOn
69 J. Wang and T. Tsuru, "Cobalt-doped silica membranes for pervaporation dehydration of ethanol/water solutions", J. Membr. Sci., 369, 13 (2011).   DOI   ScienceOn
70 T. Tsuru, M. Narita, R. Shinagawa, and T. Yoshioka, "Nanoporous titania membranes for permeation and filteration of organic solutions", Desalination, 233, 1 (2008).   DOI   ScienceOn
71 H. C. Lee and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic microfiltration and activated carbon adsorption : Effect of GAC packing fraction", Membrane Journal, 18(3), 191 (2008).
72 T. Tsuru, T. Nakasuji, M. Oka, M. Kanezashi, and T. Yoshioka, "Preparation of hydrophobic nanoporous methylated $SiO_2$ membranes and application to nanofiltration of hexane solutions", J. Membr. Sci., 384, 149 (2011).   DOI   ScienceOn
73 Fuji-Keizai, "高機能 分離膜 關聯 技術.市場 全貌と 將來豫測" (2009).
74 J. Y. Park and G. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic microfiltration and activated carbon adsorption : Effect of organic materials in N2-backflushing", Membrane Journal, 19(3), 203 (2009).
75 H. C. Lee and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic microfiltration and activated carbon adsorption : Effect of water-back-flushing time and period", Membrane Journal, 19(1), 7 (2009).