• Title/Summary/Keyword: Organic field effect transistor (OFET)

Search Result 33, Processing Time 0.032 seconds

Electrical Properties of FET using F16CuPc (F16CuPc를 이용한 FET의 전기적 특성 연구)

  • Lee, Ho-Shik;Park, Young-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.504-505
    • /
    • 2008
  • We fabricated organic field-effect transistors (OFETs) based a fluorinated copper phthalocyanine ($F_{16}CuPc$) as an active layer. And we observed the surface morphology of the $F_{16}CuPc$ thin film. The $F_{16}CuPc$ thin film thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed the typical current-voltage (I-V) characteristics and capacitance-voltage (C-V) in $F_{16}CuPc$ FET and we calculated the effective mobility.

  • PDF

Laser Sintering of Silver Nanoparticle for Flexible Electronics (유연소자 응용을 위한 은 나노입자의 레이저 소결)

  • Jia, Seok Young;Park, Won Tea;Noh, Yong-Young;Chang, Won Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.135-139
    • /
    • 2015
  • We present a fine patterning method of conductive lines on polyimide (PI) and glass substrates using silver (Ag) nanoparticles based on laser scanning. Controlled laser irradiation can realize selective sintering of conductive ink without damaging the substrate. Thus, this technique easily creates fine patterns on heat-sensitive substrates such as flexible plastics. The selective laser sintering of Ag nanoparticles was managed by optimizing the conditions for the laser scan velocity (1.0-20 mm/s) and power (10-150 mW) in order to achieve a small gap size, high electrical conductivity, and fine roughness. The fabricated electrodes had a minimum channel length of $5{\mu}m$ and conductivity of $4.2{\times}10^5S/cm$ (bulk Ag has a conductivity of $6.3{\times}10^5S/cm$) on the PI substrate. This method was used to successfully fabricate an organic field effect transistor with a poly(3-hexylthiophene) channel.

Improving Charge Injection Characteristics and Electrical Performances of Polymer Field-Effect Transistors by Selective Surface Energy Control of Electrode-Contacted Substrate (전극 접촉영역의 선택적 표면처리를 통한 유기박막트랜지스터 전하주입특성 및 소자 성능 향상에 대한 연구)

  • Choi, Giheon;Lee, Hwa Sung
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.86-92
    • /
    • 2020
  • We confirmed the effects on the device performances and the charge injection characteristics of organic field-effect transistor (OFET) by selectively differently controlling the surface energies on the contact region of the substrate where the source/drain electrodes are located and the channel region between the two electrodes. When the surface energies of the channel and contact regions were kept low and increased, respectively, the field-effect mobility of the OFET devices was 0.063 ㎠/V·s, the contact resistance was 132.2 kΩ·cm, and the subthreshold swing was 0.6 V/dec. They are the results of twice and 30 times improvements compared to the pristine FET device, respectively. As the results of analyzing the interfacial trap density according to the channel length, a major reason of the improved device performances could be anticipated that the pi-pi overlapping direction of polymer semiconductor molecules and the charge injection pathway from electrode is coincided by selective surface treatment in the contact region, which finally induces the decreases of the charge trap density in the polymer semiconducting film. The selective surface treatment method for the contact region between the electrode and the polymer semiconductor used in this study has the potential to maximize the electrical performances of organic electronics by being utilized with various existing processes to lower the interface resistance.

Surface Potential Properties of CuPc/Au Interface with Varying Temperature (CuPc/Au 계면에서의 온도 변화에 따른 표면전위 특성)

  • Lee, Ho-Shik;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.934-937
    • /
    • 2008
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. So we need the effect of the substituent group attached to the phthalocyanine on the surface potential was investigated by Kelvin probe method with varying temperature of the substrate. We were obtained the positive shift of the surface potential for CuPc thin film. We observed the electron displacement at the interface between Au electrode and CuPc layer and we were confirmed by the surface potential measurement.

Surface Potential Properties of CuPc/Au Interface with Varying Temperature (CuPc/Au 구조에서의 온도 변화에 따른 계면에서의 표면전위 특성)

  • Lee, Ho-Shik;Park, Yong-Pil;Kim, Young-Pyo;Yu, Seong-Mi;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.492-493
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine(CuPc) based field-effect transistor with different metal electrode. So we need the effect of the substituent group attached to the phthalocyanine on the surface potential was investigated by Kelvin probe method with varying temperature of the substrate. We were obtained the positive shift of the surface potential for CuPc thin film. We observed the electron displacement at the interface between Au electrode and CuPc layer and we were confirmed by the surface potential measurement.

  • PDF

Fabrication and Electrical Properties of CuPc FET with Different Substrate Temperature (CuPc FET의 기판온도에 따른 제작 및 전기적 특성 연구)

  • Lee, Ho-Shik;Park, Yong-Pil;Lim, Eun-Ju;Iwamot, Mistumasa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.488-489
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different substrate temperature. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature and $150^{\circ}C$. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET.

  • PDF

Electrical Properties of F16CuPC Single Layer FET and F16CuPc/CuPc Double Layer FET

  • Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.174-177
    • /
    • 2007
  • We fabricated organic field-effect transistors (OFETs) based a fluorinated copper phthalocyanine ($F_{16}CuPC$) and copper phthalocyanine (CuPc) as an active layer. And we observed the surface morphology of the $F_{16}CuPC$ thin film. The $F_{16}CuPC$ thin film thickness was 40 nm, and the channel length was $50{\mu}m$, channel width was 3 mm. And we also fabricated the $F_{16}CuPc/CuPc$ double layer FET and with different $F_{16}CuPc$ film thickness devices. We observed the typical current-voltage (I-V) characteristics and capacitance-voltage (C-V) in $F_{16}CuPc$ FET and we calculated the effective mobility. From the double layer FET devices, we observed the higher drain current more than single layer FET devices.

Irreversible Charge Trapping at the Semiconductor/Polymer Interface of Organic Field-Effect Transistors (유기전계효과 트랜지스터의 반도체/고분자절연체 계면에 발생하는 비가역적 전하트래핑에 관한 연구)

  • Im, Jaemin;Choi, Hyun Ho
    • Journal of Adhesion and Interface
    • /
    • v.21 no.4
    • /
    • pp.129-134
    • /
    • 2020
  • Understanding charge trapping at the interface between conjugated semiconductor and polymer dielectric basically gives insight into the development of long-term stable organic field-effect transistors (OFET). Here, the charge transport properties of OFETs using polymer dielectric with various molecular weights (MWs) have been investigated. The conjugated semiconductor, pentacene exhibited morphology and crystallinity, insensitive to MWs of polymethyl methacrylate (PMMA) dielectric. Consequently, transfer curves and field-effect mobilities of as-prepared devices are independent of MWs. Under bias stress in humid environment, however, the drain current decay as well as transfer curve shift are found to increase as the MW of PMMA decreases (MW effect). The charge trapping induced by MW effect is irreversible, that is, the localized charges are difficult to be delocalized. The MW effect is caused by the variation in the density of polymer chain ends in the PMMA: the free volumes at the PMMA chain ends act as charge trap sites, corresponding to drain current decay depending on MWs of PMMA.

Cost-Effective Soft Lithography of Organic Semiconductors in OFETs with Compact Discs as Master Molds (Compact Disc를 마스터 몰드로 사용하는 저비용의 OFET용 유기반도체 소프트 리소그래피)

  • Sejin Park;Hyukjin Kim;Tae Kyu An
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.116-121
    • /
    • 2022
  • OFET have require fine patterning technology for organic semiconductor solution process to be used in actual electronics. In this study, we compared and analyzed the soft lithography method which can form fine patterns more than the conventional spin coating method in order to confirm that it can have better electrical characteristics. The soft lithography method produced a flexible master mold using nano patterns on compact disc surfaces and obtained a 650 nm wide 2,7-Dioctyl [1] benzothieno [3,2-b] [1] benzo thiophene (C8-BTBT) nanowires. As a result, the field-effect mobility of devices fabricated by the spin coating method was 0.0036 cm2/Vs and mobility of devices produced by soft lithography method was 0.086 cm2/Vs, which was about 20 times higher than spin-coated devices and has better electrical performance.

Flexible E-Paper Displays Using Low-Temperature Process and Printed Organic Transistor Arrays

  • Jin, Yong-Wan;Kim, Joo-Young;Koo, Bon-Won;Song, Byong-Gwon;Kim, Jung-Woo;Kim, Do-Hwan;Yoo, Byung-Wook;Lee, Ji-Youl;Chun, Young-Tea;Lee, Bang-Lin;Jung, Myung-Sup;Park, Jeong-Il;Lee, Sang-Yoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.431-433
    • /
    • 2009
  • We developed 4.8 inch WQVGA e-paper on plastic substrate using organic field effect transistors (OFETs). Polyethylene naphthalate (PEN) film was used as a flexible substrate and arrays of OFETs with bottom-gate, bottom-contact structure were fabricated on it. Lowtemperature curable organic gate insulating materials were employed and polymer semiconductor solutions were ink-jetted on arrays with high-resolution. At all steps, process temperature was limited below $130^{\circ}C$. Finally, we could drive flexible e-paper displays based on OFET arrays with the resolution of 100 dpi.

  • PDF