• Title/Summary/Keyword: Organic device

Search Result 1,353, Processing Time 0.028 seconds

Angular dependence of emision pattern in top-emission organic light-emitting diodes (전면 유기 발광 다이오드의 각도에 따른 발광 패턴 연구)

  • Joo, Hyun-Woo;Mok, Rang-Gyun;Kim, Tae-Wan;Jang, Kyung-Wook;Song, Min-Jong;Lee, Ho-Shik;An, Hui-Chul;Na, Su-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.277-278
    • /
    • 2009
  • We have studied an angular dependence of emission pattern of top-emssion organic light-emitting diodes (TEOLED). Device structure is Al(100nm)/TPD(40nm)/$Alq_3$(60nm)/LiF(0.5nm)/Al(2nm)/Ag(30nm). N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (TPD) and tris-(8-hydroxyquinoline) aluminium ($Alq_3$)were used as a hole transport layer and emission layer, respectively. Organic layers and cathode were thermally evaporated at $2\times10^{-5}$torr. The evaporation rate of the organic material was maintained to be $1.5\sim2.0{\AA}/s$, and that of metal layer to be $0.5\sim5{\AA}/s$. A transmittance of a cathode electrode(Al/Ag) in visible region is about 25~30%. In order to measure view-angle dependent intensity, electroluminenscence spectra of the device at each angle were integrated. Angle dependent emission spectra of the device do not show blue shift. Emission intensity of the device that the going straight characteristic is stronger the bottom-emission organic light-emitting diodes is shown.

  • PDF

Layer Thickness-dependent Electrical and Optical Properties of Bottom- and Top-emission Organic Light-emitting Diodes

  • An, Hui-Chul;Na, Su-Hwan;Joo, Hyun-Woo;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.28-30
    • /
    • 2009
  • We have studied organic layer-thickness dependent electrical and optical properties of bottom- and top-emission devices. Bottom-emission device was made in a structure of ITO(170 nm)/TPD(x nm)/$Alq_3$(y nm)/LiF(0.5 nm)/Al(100 nm), and a top-emission device in a structure of glass/Al(100 nm)/TPD(x nm)/$Alq_3$(y nm)/LiF(0.5 nm)/Al(25 nm). A hole-transport layer of TPD (N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine) was thermally deposited in a range of 35 nm and 65 nm, and an emissive layer of $Alq_3$ (tris-(8-hydroxyquinoline) aluminum) was successively deposited in a range of 50 nm and 100 nm. Thickness ratio between the hole-transport layer and the emissive layer was maintained to be 2:3, and a whole layer thickness was made to be in a range of 85 and 165 nm. From the current density-luminance-voltage characteristics of the bottom-emission devices, a proper thickness of the organic layer (55 nm thick TPD and 85 nm thick $Alq_3$ layer) was able to be determined. From the view-angle dependent emission spectrum of the bottom-emission device, the peak wavelength of the spectrum does not shift as the view angle increases. However, for the top-emission device, there is a blue shift in peak wavelength as the view angle increases when the total layer thickness is thicker than 140 nm. This blue shift is thought to be due to a microcavity effect in organic light-emitting diodes.

Optical Thin Film and Micro Lens Design for Efficiency Improvement of Organic Light Emitting Diode (유기 발광소자의 효율 향상을 위한 광학박막 및 마이크로렌즈 설계)

  • Ki, Hyun-Chul;Kim, Doo-Gun;Kim, Seon-Hoon;Kim, Sang-Gi;Park, A-Reum;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.817-821
    • /
    • 2011
  • We have proposed an optical thin film and micro lens to improve the luminance of organic light emitting device. The first method, optical thin film was calculated refractive index of dielectric layer material that was modulated refractive index of organic material, ITO (indium tin oxide)and glass. The second method, microlens was applied with lenses on the organic device. Optical thin films were designed with Macleod Simulator and Micro Lenses were calculated by FDTD (finite-difference time-domain) solution. The structure of thin film was designed in organic material/ITO/dielectric layer/glass. The lenses size, height and distance were 5 ${\mu}m$, 1 ${\mu}m$, 1 ${\mu}m$, respectively. The material of micro lenses used silicon dioxide. Result, The highest luminance of OLED which applied with microlens was 11,185 $cd/m^2$, when approval voltage was 14.5 V, applied thin film was 5,857 $cd/m^2$. The device efficiency applying microlens increased 3 times than the device which does not apply microlens.

Organic photovoltaic cells using low sheet resistance of ITO for large-area applications

  • Kim, Do-Geun;Gang, Jae-Uk;Kim, Jong-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.5.1-5.1
    • /
    • 2009
  • Organic photovoltaic (OPV)cells have attracted considerable attention due to their potential for flexible, lightweight, and low-cost application of solar energy conversion. Since a 1% power conversion efficiency (PCE) OPV based on a single donor-acceptor heterojunction was reported by Tang, the PCE has steadily improved around 5%. It is well known that a high parallel (shunt)resistance and a low series resistance are required simultaneously to achieve ideal photovoltaic devices. The device should be free of leakage current through the device to maximize the parallel resistance. The series resistance is attributed to the ohmic loss in the whole device, which includes the bulk resistance and the contact resistance. The bulk resistance originated from the bulk resistance of the organic layer and the electrodes; the contact resistance comes from the interface between the electrodes and the active layer. Furthermore, it has been reported that the bulk resistance of the indium tin oxide (ITO) of the devices dominates the series resistance of OPVs for a large area more than $0.01\;cm^2$. Therefore, in practical application, the large area of ITO may significantly reduce the device performance. In this work, we investigated the effect of sheet resistance ($R_{sh}$) of deposited ITO on the performance of OPVs. It was found that the device performance of polythiophene-fullerene (P3HT:PCBM) bulk heterojunction OPVs was critically dependent on Rsh of the ITO electrode. With decreasing $R_{sh}$ of the ITO from 39 to $8.5\;{\Omega}/{\square}$, the fill factor (FF) of OPVs was dramatically improved from 0.407 to 0.580, resulting in improvement of PCE from $1.63{\pm}0.2$ to $2.5{\pm}0.1%$ underan AM1.5 simulated solar intensity of $100\;mW/cm^2$.

  • PDF

Characteristics of Organic Electroluminescent Device Consisting of PDPMA LB Film as a Polymer Hole Transport Material and Alq$_3$ (고분자 정공 전달체로서 PDPMA LB 필름과 Alq$_3$로 구성되는 유기 발광소자의 특성)

  • 오세용;김형민;이창호;최정우;이희우
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.90-96
    • /
    • 2000
  • Organic electroluminescent (EL) device was fabricated with Alq$_3$ as an emitting material and PDPMA ultra thin film prepared by Langmuir-Boldgett technique as a polymer hole transport layer. A stable condensed PDPMA monolayer was obtained using arachidic acid as a surface active material. The thickness and absorbance of PDPMA LB film increased line-arly with the layer numbers. The organic multilayered device consisted of ITO/PDPMA LB film (19 layers)/Alq$_3$/Al emitted green light with brightness of 2500 cd/m$^2$ at a DC 14 V Especially, the drive voltage of EL device having PDPMA LB film of 15 layers exhibited the value as low as 4 V. The effects of thickness control and molecular orientation in the PDPMA LB film on EL performance were discussed.

  • PDF

Organic-layer and reflectivity of transparent electrode dependent, microcavity effect of top-emission organic light-eitting diodes (TE-OLED의 유기물층과 반투명 음전극의 반사도에 따른 마이크로 캐비티 특성)

  • An, Hui-Chul;Na, Su-Hwan;Joo, Hyun-Woo;Mok, Rang-Kyun;Jung, Kyung-Seo;Chio, Seong-Jea;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.299-300
    • /
    • 2009
  • We have studied an organic layer and semitransparent Al cathode thickness dependent optical properties for top-emission organic light-emitting diodes. Device structure is ITO(170nm)/TPD(xnm)/$Alq_3$(ynm)/LiF(0.5nm)/Al(100nm) and Al(100nm)/TPD(xnm)/$Alq_3$(ynm)/LiF(0.5nm)/Al(25nm). While a thickness of total, organic layer was varied from 85nm to 165nm, a ratio of those two layers was kept to be about 2:3. Then it was compared with that of bottom devices. And a thickness of semitransparent Al cathode was varied from 20nm to 30nm for the device with an organic layer thickness of 140nm. We were able to control the emission spectra from the top-emission organic light-emitting diodes.

  • PDF

Electroluminescence device of the new organic materials using Langmuir-Blodgett(LB) method (LB 법을 이용한 새로운 유기물의 전기 발광 소자에 관한 연구)

  • 이호식;이원재;박종욱;김태완;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.601-604
    • /
    • 1999
  • Electroluminescence(EL) devices based on organic thin films have attracted lots of interests in large-area light-emitting display. Recently, many EL researcher have interested a new emissive organic material. In this study, light-emitting organic electroluminescent devices were fabricated using Langmuir-Blodgett(LB) technique with new emissive organic material. This new emissive organic material were synthesis by our teams and we called PECCP [poly(3,6-N-2ethylhexyl carbazoly cyanoterephthalidene)] which has strong electron donor group and electron acceptor group in main chain repeat unit. This material has good solubility in common organic solvent such as chloroform. THF, etc. and has a good stability in air. In here, the new emissive material is applied to Langmuir-Blodgett(LB) method because our new material has a good stability in air. Optimum conditions of film deposition were examined by a surface pressure-area( $\pi$ -A) isotherms with various factors. The LB film were deposited on a indium Tin Oxide(ITO) glass. We were investigated by measuring current-voltage(I-V) characteristics. Also we were measured the UV/visible absorption at about 410nm and PL spectrum at about 530nm. We are attempt to the electroluminescence device properties of the new emissive material by Langmuir-Blodgett(LB) technique.

  • PDF

Synthesis and Effect on t-Butyl PBD of the Blue Light Emitting Poly(phenyl-9,9-dioctyl-9',9'-dihexanenitrile) fluorene

  • Kim Byong-Su;Kim Chung-Gi;Oh Jea-Jin;Kim Min-Sook;Kim Gi-Won;Park Dong-Kyu;Woo Hyung-Suk
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.343-347
    • /
    • 2006
  • A novel, blue light-emitting polymer, poly(phenyl-9,9-dioctyl-9',9'dihexanenitrile)fluorene (PPFC6N), containing an alkyl and cyano group in the side chain, was synthesized by Suzuki polymerization and characterized. The polymer structure was confirmed by $^1H-NMR$. The number average molecular weight and the weight average molecular weight of the obtained polymer were 9,725 and 9,943 respectively. The resulting polymer was thermally stable with a glass transition temperature ($T_g$) of $93^{\circ}C$, and was easily soluble in common organic solvents such as THF, toluene, chlorobenzene and chloroform. The HOMO and LUMO energy levels of the polymer were revealed as 5.8 and 2.88 eV by cyclic voltammetry study, respectively. The ITO/PEDOT:PSS (40 nm)/PPFC6N (80 m)/LiF (1 nm)/Al (150 nm) device fabricated from the polymer emitted a PL spectrum at 450 nm and showed a real blue emission for pure PPFC6N in the EL spectrum. When t-butyl PBD was introduced as a hole blocking layer, the device performance was largely improved and the EL spectrum was slightly shifted toward deep blue. The device with PPFC6N containing t-butyl PBD layer showed the maximum luminance of 3,200 $cd/m^2$ at 9.5 V with a turnon voltage of 7 V.

Fabrication of Scattering Layer for Light Extraction Efficiency of OLEDs (RIE 공정을 이용한 유기발광다이오드의 광 산란층 제작)

  • Bae, Eun Jeong;Jang, Eun Bi;Choi, Geun Su;Seo, Ga Eun;Jang, Seung Mi;Park, Young Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.95-102
    • /
    • 2022
  • Since the organic light-emitting diodes (OLEDs) have been widely investigated as next-generation displays, it has been successfully commercialized as a flexible and rollable display. However, there is still wide room and demand to improve the device characteristics such as power efficiency and lifetime. To solve this issue, there has been a wide research effort, and among them, the internal and the external light extraction techniques have been attracted in this research field by its fascinating characteristic of material independence. In this study, a micro-nano composite structured external light extraction layer was demonstrated. A reactive ion etching (RIE) process was performed on the surfaces of hexagonally packed hemisphere micro-lens array (MLA) and randomly distributed sphere diffusing films to form micro-nano composite structures. Random nanostructures of different sizes were fabricated by controlling the processing time of the O2 / CHF3 plasma. The fabricated device using a micro-nano composite external light extraction layer showed 1.38X improved external quantum efficiency compared to the reference device. The results prove that the external light extraction efficiency is improved by applying the micro-nano composite structure on conventional MLA fabricated through a simple process.

High performance of ZnO thin film transistors using $SiN_x$ and organic PVP gate dielectrics

  • Kim, Young-Woong;Park, In-Sung;Kim, Young-Bae;Choi, Duck-Kyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.5
    • /
    • pp.187-191
    • /
    • 2007
  • The device performance of ZnO-thin film transistors(ZnO-TFTs) with gate dielectrics of $SiO_2,\;SiN_x$ and Polyvinylphenol(PVP) having a bottom gate configuration were investigated. ZnO-TFTs can induce high device performance with low intrinsic carrier concentration of ZnO only by controlling gas flow rates without additional doping or annealing processes. The field effect mobility and on/off ratio of ZnO-TFTs with $SiN_x$ were $20.2cm^2V^{-1}s^{-1}\;and\;5{\times}10^6$ respectively which is higher than those previously reported. The device adoptable values of the mobility of $1.37cm^2V^{-1}s^{-1}$ and the on/off ratio of $6{\times}10^3$ were evaluated from the device with organic PVP dielectric.