Synthesis and Effect on t-Butyl PBD of the Blue Light Emitting Poly(phenyl-9,9-dioctyl-9',9'-dihexanenitrile) fluorene

  • Kim Byong-Su (Center for Organic Devices and Advanced Materials, Department of Chemistry, Kyungsung University) ;
  • Kim Chung-Gi (Center for Organic Devices and Advanced Materials, Department of Chemistry, Kyungsung University) ;
  • Oh Jea-Jin (Center for Organic Devices and Advanced Materials, Department of Chemistry, Kyungsung University) ;
  • Kim Min-Sook (Center for Organic Devices and Advanced Materials, Department of Chemistry, Kyungsung University) ;
  • Kim Gi-Won (Center for Organic Devices and Advanced Materials, Department of Chemistry, Kyungsung University) ;
  • Park Dong-Kyu (Center for Organic Devices and Advanced Materials, Department of Chemistry, Kyungsung University) ;
  • Woo Hyung-Suk (Department of Opto-electronic Devices Engineering, Kyungsung University)
  • Published : 2006.06.01

Abstract

A novel, blue light-emitting polymer, poly(phenyl-9,9-dioctyl-9',9'dihexanenitrile)fluorene (PPFC6N), containing an alkyl and cyano group in the side chain, was synthesized by Suzuki polymerization and characterized. The polymer structure was confirmed by $^1H-NMR$. The number average molecular weight and the weight average molecular weight of the obtained polymer were 9,725 and 9,943 respectively. The resulting polymer was thermally stable with a glass transition temperature ($T_g$) of $93^{\circ}C$, and was easily soluble in common organic solvents such as THF, toluene, chlorobenzene and chloroform. The HOMO and LUMO energy levels of the polymer were revealed as 5.8 and 2.88 eV by cyclic voltammetry study, respectively. The ITO/PEDOT:PSS (40 nm)/PPFC6N (80 m)/LiF (1 nm)/Al (150 nm) device fabricated from the polymer emitted a PL spectrum at 450 nm and showed a real blue emission for pure PPFC6N in the EL spectrum. When t-butyl PBD was introduced as a hole blocking layer, the device performance was largely improved and the EL spectrum was slightly shifted toward deep blue. The device with PPFC6N containing t-butyl PBD layer showed the maximum luminance of 3,200 $cd/m^2$ at 9.5 V with a turnon voltage of 7 V.

Keywords

References

  1. D. Y. Kim, H. N. Cho, and C. Y. Kim, Drog. Dolym. Scio, 25, 1089 (2000)
  2. M. T. Bernius, M. Inbasekaran, J. O'Brren, and W. Wa, Adv. Mater., 12, 1737 (2000) https://doi.org/10.1002/1521-4095(200012)12:23<1737::AID-ADMA1737>3.0.CO;2-N
  3. R. H. Friend and N. C. Greenham, in Handbook of Conducting Polymer, T. A. Skatheim, R. L. Elsenbaumer, and R. J. Reynolds, Eds., Marcel Dekker, New York, 1998, p. 823
  4. A. Kraff, A. C. Grimsdale, and A. B. Holmes, Angew. Chem. Int. Ed., 37, 402 (1998) https://doi.org/10.1002/(SICI)1521-3773(19980302)37:4<402::AID-ANIE402>3.0.CO;2-9
  5. C. H. Chen and J. M. Shi, Coord. Chem. Rev., 171 (1998)
  6. J. Kido and J. Endo, Chem. Lett., 593 (1997)
  7. Y. H. Kim, J. C. Park, H. J. Kang, J. W. Park, H. S. Kim, J. H. Kim, and S. K. Kwon, Macromol. Res., 13, 403 (2005) https://doi.org/10.1007/BF03218473
  8. Y. S. Gal, S. H. Jin, H. S. Lee, and S. Y. Kim, Macromol. Res., 13, 491 (2005) https://doi.org/10.1007/BF03218486
  9. Q. Pei and Y. Yang, J. Am. Chem. Soc., 118, 7416 (1996) https://doi.org/10.1021/ja9615233
  10. Y. S. Suh, S. W, Ko, B. J. Jung, and H. K. Shim, Opt. Mater., 21, 109 (2002)
  11. C. Ego, A. C. Grimsdale, F. Uckert, G. Yn, G. Yu, G. Srdanov, and K. Mullen, Adv. Mater., 14, 809 (2002) https://doi.org/10.1002/1521-4095(20020605)14:11<809::AID-ADMA809>3.0.CO;2-8
  12. M. Kreyenschmidt, G. Klaerner, T. Fuhrer, J. Ashenhurat, S. Karg, W. D. Chem, V. Y. Lee, J. C. Scott, and R. D. Miller, Macromolecules, 31, 1099 (1998) https://doi.org/10.1021/ma970914e
  13. G. Klarner, J. I. Lee, M. H. Davey, and R. D. Mieer, Adv. Mater., 11, 115 (1999) https://doi.org/10.1002/(SICI)1521-4095(199902)11:2<115::AID-ADMA115>3.0.CO;2-N
  14. J. I. Lee, G. Klaerner, and R. D. Miller, Chem. Mater., 11, 1083 (1999) https://doi.org/10.1021/cm981049v
  15. T. Miteva, A. Meisel, W. Knoll, H. G. Nothofery. U. scherf, D. C. Muller. K. Meerholz, A. Yasuda, and D. Neher, Adv. Mater., 13, 565 (2001) https://doi.org/10.1002/1521-4095(200104)13:8<565::AID-ADMA565>3.0.CO;2-W
  16. S. Setayesh, A. C. Grimsdale, T. Weil, V. E. J. W. Liat, and G. Leisrng, J. Am. Chem. Soc., 123, 946 (2001) https://doi.org/10.1021/ja0031220
  17. S. H. Jin, D. S. Koo, C. K. hwang, J. Y. Do, Y. I. Kim, Y. S. Gel, J. W. Lee, and J. T. Hwang, Macromol. Res., 13, 114 (2005) https://doi.org/10.1007/BF03219024
  18. Y. Ohmori, M. Uchida, K. Muro, and K. Yoshino, Jpn. J. Appl. phys., 30, L 1941 (1991) https://doi.org/10.1143/JJAP.30.L1941
  19. H. N. Cho, J. K. Kim, D. Y. Kim, C. Y. Kim, N. W. Song, and D. Kim, Macromolecules, 32, 1476 (1999) https://doi.org/10.1021/ma981340w
  20. N. C. Greenham and A. B. Holmes, Nature (London), 628 (1993)
  21. S. C. Moratti, R. Cervini, A. B. Holmes, D. R. Baigent, R. H. Frend, N. C. Greenham, J. Gruner, and P. J. Hamer, Synth. Met., 71, 2117 (1995) https://doi.org/10.1016/0379-6779(94)03193-A