• Title/Summary/Keyword: Organic chemistry

Search Result 2,799, Processing Time 0.029 seconds

Model Verification of Decision Assisting Nitrogen Expert System NES to Illinois Cornfields (일리노이주의 옥수수 포장에서 질소질 비료의 적정시용에 대한 전문가체계의 검증)

  • Kim, Won-Il;Jung, Goo-Bok;Huck, M.G.;Kim, Kil-Yong;Park, Ro-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.64-70
    • /
    • 2001
  • To verify the newly developed decision assisting expert system for nitrogen fertilizer application NES to Illinois cornfields, a couple of N rate studies from Dr. Howard and five Illinois Agricultural Experiment Stations were applied. Four types of recommendations including the current Illinois recommendation, Hoeft recommendation, NES, and maximum economic recommendation were compared with each other for the crop yields, profits, recovery rate, and N losses to cornfields. The N rate of NES recommendation, considering productivity index (PI), soil organic matter content (SOM), and pre-sidedressing nitrate concentration (PSNT) level, was the lowest in comparison to those of other recommendations. However, N recovery rate in NES was generally higher and the resulting N loss was lower than others. But, adherence to the recommendations may also reduce farmers income if environmental expense did not considered. Therefore, NES will be more effective by adding the factors including environmental expense, tillage systems, crop rotation, and other agricultural management parameters.

  • PDF

Mechanisms of Humic Acid-Heavy Metal Complexation (부식산(腐植酸)-중금속(重金屬) 착화합물형성(錯化合物形成) 반응(反應)에 대한 Mechanism)

  • Lee, Jyung-Jae;Chang, Sang-Moon;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.114-122
    • /
    • 1995
  • Complexation experiment between humic acid and heavy metal cations was conducted to clear information on heavy metal adsorption by soil organic constituent. The absorbance of UV-visible light of humic acid-metal complexes increased with increasing wavelength, and the order of their absorbance was in the order of Zn->Cd->Cu- saturated humic acid. Carboxyl and phenolic OH groups participated in the complex formation between heavy metal cations and functional groups of humic acid, and the amounts complex was in the order of $Cu^{+{+}}$ > $Zn^{+{+}}$ $\geq$ $Cd^{+{+}}$. The stability constants of humic acid-metal complexes increased with increasing pH, and the order of first stability constants was $Zn^{+{+}}$ > $Cd^{+{+}}$ > $Cu^{+{+}}$, and those of second and overall stability constants were $Cu^{+{+}}$ > $Zn^{+{+}}$ > $Cd^{+{+}}$. With increasing pH, the average binding numbers betwen heavy metal cations and functional groups of humic acid increased the order of $Cu^{+{+}}$ > $Zn^{+{+}}$ > $Cd^{+{+}}$. It was postulated that two types of complexations between heavy metal cations and functional groups of humic acid. One was the reactions in which only carboxyl groups participated to form complexes, and the other was those in which both carboxyl and phenolic OH groups simultaneously participated.

  • PDF

Biochemical and cultural characteristics of mineral-solubilizing Acinetobacter sp. DDP346 (미네랄 가용화능을 갖는 Acinetobacter sp. DDP346의 생화학적 및 배양학적 특성)

  • Kim, Hee Sook;Lee, Song Min;Oh, Ka-Yoon;Kim, Ji-Youn;Lee, Kwang Hui;Lee, Sang-Hyeon;Jang, Jeong Su
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.333-341
    • /
    • 2021
  • In this study, to select strains suitable as microbial agent from among rhizosphere microorganisms present in rhizosphere soil and roots, the mineral solubilization ability, antifungal activity against 10 types of plant pathogenic fungi, and plant growth-promoting activity of rhizosphere microorganisms were evaluated. As a result, DDP346 was selected because it has solubilization ability of phosphoric acid, calcium carbonate, silicon, and zinc; nitrogen fixing ability; production ability of siderophore, indole-3-acetic acid, and aminocyclopropane-1-carboxylate deaminase; and antifungal activity against seven types of plant pathogenic fungi. DDP346 showed a 99.9% homology with Acinetobacter pittii DSM 21653 (NR_117621.1); phylogenetic analysis also revealed a close relationship with Acinetobacter pittii based on the 16S rRNA base sequence. The growth conditions of DDP346 were identified as temperatures in the range of 10-40 ℃, pH in the range of 5-11, and salt concentrations in the range of 0-5%. In addition, a negative correlation coefficient (r2 = -0.913, p <0.01) was shown between pH change and the solubilized phosphoric acid content of Acinetobacter sp. DDP346, and this is assumed to be due to the organic acid generated during culture. Consequently, through the evaluation of its mineral solubilization ability, antifungal activity against plant pathogenic fungi, and plant growth-promoting activity, the potential for the utilization of Acinetobacter sp. DDP346 as a multi-purpose microbial agent is presented.

Effects of Advanced Oxidation of Penicillin on Biotoxicity, Biodegradability and Subsequent Biological Treatment (고도산화공정 처리가 페니실린의 생독성, 생분해도 및 생물학적 분해에 미치는 영향)

  • Luu, Huyen Trang;Minh, Dang Nhat;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.690-695
    • /
    • 2018
  • Advanced oxidation processes (AOPs) composed of O3 and UV were applied to degrade penicillin (PEN). The degradation efficiency was evaluated in terms of changes in the absorbance (ABS) and total organic carbon (TOC). The combination of $O_3/H_2O_2/UV$ and $O_3/UV$ showed the best performance for the reduction of ABS (100% for 9 min) and TOC (70% for 60 min) values, although the mineralization was uncompleted under the experimental condition in this study. The change in biotoxicy was monitored with Escherichia coli susceptibility and Vibrio fischeri biofluorescence. The E. coli susceptibility was eliminated completely for 9 min by $O_3/UV$, and the toxicity to V. fischeri biofluorescence was 57% reduced by $O_3/H_2O_2/UV$. For the ultimate treatment of PEN, it is suggested that an AOP using $O_3/UV$ is followed by biological treatment, utilizing the enhanced biodegradability by the AOP. During 30 min of $O_3/UV$ treatment, the $BOD_5/COD$ ratio as an indication of biodegradability showed about 4-fold increment, compared to that of using a non-treated sample. TOC removal rate for AOP-pretreated PEN wastewater increased 55% compared to that of using the non-pretreated one through an aerobic biological treatment by Pseudomonas putida for artificial wastewater containing 20 mg/L of PEN. In conclusion, $O_3/UV$ process is recommended as a pretreatment step prior to an aerobic biological process to improve the ultimate degradation of penicillin.

Ice Melting Capacity Evaluation of Applicable Materials of De-icing Fluid for High Speed Railway Rolling Stock (고속철도차량용 제빙액으로의 적용가능물질에 대한 융빙성능 평가)

  • Park, Gyoung-Won;Lee, Jun-Ku;Lee, Hong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.384-388
    • /
    • 2019
  • In winter season, the snow and ice accretion on the bottom of the high speed railway rolling stock and boogie part has fallen at a high speed from the ballast section (gravel section for the transmission of the rolling stock load received by sleepers and fixing sleepers), causing the gravel to be scattered, thereby damaging the railway rolling stock structures and facilities. In order to solve these problems, the gravel scattering prevention net, manual de-icing, and movable hot air machine were used, but their efficiency was low. For the more efficient de-icing than ever before, an optimum material for de-icing fluid for high speed railway rolling stock was developed by evaluating the ice melting capacity, kinematic viscosity, evaporation of the material used as a chemical de-icing fluid. Four kinds of organic acid salts (sodium formate, sodium acetate, potassium formate and potassium acetate) and two different alcohols (propylene glycol, glycerol) were used as evaluation materials. Potassium formate, potassium acetate, and propylene glycol had similar ice melting capacities in the indoor test, but the propylene glycol showed the best ice melting capacity in spraying the system simulation test. This is because the kinematic viscosity of propylene glycol was 2.989029 St, which is higher than those of other materials therefore, it could stay longer on the ice and de-icing. In addition, potassium formate and potassium acetate were difficult to be used since the crystals precipitated and adversely affected the appearance of the rolling stock. The propylene glycol is the most optimum as an de-icing fluid for the high speed railway rolling stock.

A Study on the Preparation of Ternary Transition Metal Coated-Dimensionally Stable Anode for Electrochemical Oxidation (전기화학적 산화를 위한 삼원 전이 금속 코팅 불용성 산화 전극 제조에 관한 연구)

  • Park, Jong-Hyeok;Choi, Jang-Uk;Park, Jin-Soo
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.409-416
    • /
    • 2021
  • Dimensionally stable electrodes are one of the important components in electrochemical water treatment processes. In the manufacturing of the dimensionally stable electrodes, the type of metal catalyst coated on the surface of the metal substrate, the coating and sintering methods substantially influence their performance and durability. In this study, using Ir-Ru-Ta ternary metal coating, various electrodes were prepared depending on the coating method under the same pre-treatment and sintering conditions, and its performance and durability were studied. As a coating method, brush and spray coating were used. As a result, the reduction in the amount of catalyst ink was achieved because more amount of metal could be coated for the electrode using spraying with the same amount of catalyst ink. In addition, the spray_2.0_3.0 electrode prepared by a specific spray coating method shows the phenomenon of cracking and the uniform coating of the ternary metal on the surface of the coating layer, and results in a high electrochemically active specific surface area, and the decomposition performance of 4-chlorophenol was superior to the other electrodes. However, it was found that there was no significant difference in durability depending on the coating method.

Assessment of Fire Risk Rating for Wood Species in Fire Event (화재 발생 시 목재 수종의 화재위험성 등급 평가)

  • Jin, Eui;Chung, Yeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.423-430
    • /
    • 2021
  • In order to evaluate the fire risk and fire risk rating of wood for construction materials, this study focused on fire performance index-III (FPI-III), fire growth index-III (FGI-III), and fire risk index-IV (FRI-IV) according to Chung's equations-III and -IV. Western red cedar, needle fir, ash, and maple were used as the specimens. The fire characteristics were investigated using a cone calorimeter (ISO 5660-1) equipment on the specimen. The FPI-III measured after the combustion reaction was 0.86 to 12.77 based on polymethylmethacrylate (PMMA). The FGI-III was found to be 0.63 to 5.26 based on PMMA. The fire rating according to the FRI-IV, which is the fire rating index, was 0.05 to 6.12, and the western red cedar was 122.4 times higher than that of the maple. The fire risk rating according to the FRI-IV increased in the order of maple, ash, needle fir, PMMA and western red cedar. The CO peak concentration of all specimens was measured as 103 to 162 ppm, and it was 2.1 to 3.2 times higher than 50 ppm, the permissible exposure limits of the US occupational safety and health administration. Materials such as western red cedar, which have a low bulk density and contain a large amount of volatile organic substances, have a low FPI-III and a high FGI-III, so they have a high fire risk rating.

Rating Evaluation of Fire Risk for Combustible Materials in Case of Fire (화재 시 연소성 물질에 대한 화재 위험성 등급 평가)

  • Chung, Yeong-Jin;Jin, Eui
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.75-82
    • /
    • 2021
  • This study investigated the fire risk assessment of woods and plastics for construction materials, focusing on the fire performance index-III (FPI-III), fire growth index-III (FGI-III), and fire risk index-IV (FRI-IV) by a newly designed method. Japanese cedar, red pine, polymethylmethacrylate (PMMA), and polyvinyl chloride (PVC) were used as test pieces. Fire characteristics of the materials were investigated using a cone calorimeter (ISO 5660-1) equipment. The fire performance index-III measured after the combustion reaction was found to be 1.0 to 15.0 with respect to PMMA. Fire risk by fire performance index-III increased in the order of PVC, red pine, Japanese cedar, and PMMA. The fire growth index-III was found to be 0.5 to 3.3 based on PMMA. Fire risk by fire growth index-III increased in the order of PVC, PMMA, red pine, and Japanese cedar. COpeak concentrations of all specimens were measured between 106 and 570 ppm. In conclusion, it is understood that Japanese cedar with a low bulk density and PMMA containing a large amount of volatile organic substances have a low fire performance index-III and high fire growth index-III, and thus have high fire risk due to fire. This was consistent with the fire risk index-IV.

Preparation and Anti-fouling Properties of PVDF Mixed Matrix Asymmetric Membranes Impregnated with 𝛽-cyclodextrin (𝛽-사이클로덱스트린을 함침시킨 PVDF 혼합기질 비대칭막의 제조와 내오염성 평가)

  • Shin, Sung Ju;Lee, Jong Sung;Lee, Jeong Gil;Youm, Kyung Ho
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.434-442
    • /
    • 2021
  • Poly(vinylidene fluoride) (PVDF) membrane has a good membrane durability because of its high mechanical resistance, thermal and chemical stability. However, the strong hydrophobic property of PVDF membrane can induce a low water permeability and easy fouling by proteins and organic matters. In order to improve the anti-fouling properties of PVDF membrane, the PVDF mixed matrix asymmetric membranes impregnated with biofunctional material 𝛽-cyclodextrin (𝛽-CD) in the membrane structure were prepared by phase inversion method. The membrane filtration experiments of pure water and BSA solution were performed using the PVDF/𝛽-CD mixed matrix asymmetric membranes prepared according to the 𝛽-CD contents. The experiments showed that the introduction of 𝛽-CD into the PVDF polymer matrix contributed to increase in the hydrophilic property of the PVDF membranes, and this led to the reduction of contact angles and improvement of anti-fouling properties. The PVDF/𝛽-CD membrane which was prepared using the dope solution with a 2 wt% 𝛽-CD content represented 64 L/m2·h of pure water flux, 95% of BSA rejection and maximum 80% of flux enhancements compared to flux results of the pristine PVDF membrane.

Fire Risk Index and Grade Evaluation of Combustible Materials by the New Chung's Equation-XII (새로운 Chung's equation-XII에 의한 연소성 물질의 화재위험성지수 및 등급 평가)

  • Yeong-Jin Chung;Eui Jin
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.388-396
    • /
    • 2023
  • The evaluation of fire risk for combustible materials was carried out using Chung's equations-X, Chung's equations-XI, and Chung's equation-XII, which were newly established. The fire risk index-XII (FRI-XII) and fire risk rating (FRR) were calculated for specimens including camphor tree, cherry, rubber tree, and elm. The combustion characteristics were determined using a cone calorimeter according to ISO 5660-1. Chung's equations caculated the fire performance index-X (FPI-X) and fire growth index-X (FGI-X) values ranged from 89.34 to 1696.75 s2 /kW and from 0.0006 to 0.0107 kW/s2 , respectively. In addition, the fire performance index-XI (FPI-XI) and fire growth index-XI (FGI-XI) varied from 0.08 to 1.48 and from 0.67 to 11.89, respectively. The fire risk index-XII (FRI-XII), which is an indicator of fire risk, showed that camphor tree had a value of 148.63 (fire risk rating: G), indicating a very high fire risk. This suggests that combustible materials with a high concentration of volatile organic compounds have lower FPI-X and FPI-XI values, higher FGI-X and FGI-XI values, and consequently higher FRI-XII values, indicating an increased fire risk.