• Title/Summary/Keyword: Organic Solution

Search Result 1,960, Processing Time 0.268 seconds

Solution-processed Organic Trilayer Solar Cells Incorporating Conjugated Polyelectrolytes

  • Cha, Myoung Joo;Walker, Bright;Seo, Jung Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.192.1-192.1
    • /
    • 2014
  • We report solution-processed organic trilayer solar cells consisting of poly (3-hexylthiophene) (P3HT), a conjugated polyelectrolyte (CPE) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), wherein the effect CPE layer thickness on device properties was investigated. The current-voltage characteristics under illumination and dark as well as photoluminescence were characterized using various concentrations (0.02, 0.1, and 0.3wt%) of to deposit the CPE interlayer between the donor and acceptor layers. We also investigated the influence of molecular dipole moments in the trilayer solar cells by external stimuli. These results provide an experimental approach for investigating the influence of interfacial dipoles on solar cell parameters when placed between the donor and acceptor and allow us to obtaining fundamental information about the donor/acceptor interface in organic solar cells.

  • PDF

Enhanced Performance of Solution-Processed n-channel Organic Thin Film Transistor with Electron-Donating Injection Layer

  • Kim, Sung-Hoon;Lee, Sun-Hee;Han, Seung-Hoon;Choi, Min-Hee;Jeong, Yong-Bin;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.64-66
    • /
    • 2009
  • We obtained high performance of n-type organic thin film transistors (OTFTs) using a solution process. N, N' bis-(octyl-)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI-$8CN_2$) in ambient air. Low work function interlayer on source/drain is needed to enhance the electron injection to low LUMO level of n-type organic semiconductor. By using self-assembled monolayer (SAM) the field-effect mobility of 0.33 $cm^2$/Vs was achieved.

  • PDF

Effect of Chlorella sp. on Improving Antioxidant Activities and Growth Promotion in Organic Soybean Sprout Cultivation (클로렐라 처리에 의한 유기농 콩나물 생육촉진 및 항산화 능력 증진효과)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Hong, Sung-Jun;Park, Jong-Ho;Han, Eun-Jung;Jee, Hyeong-Jin;Lee, Sung-Buk;Kim, Seok-Cheol
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.939-950
    • /
    • 2015
  • The purpose of this study was to estimate the growth promoting effects and improvement of antioxidant activity of the soybean sprouts treated with Chlorella sp. culture solution. The soybean sprout treated with 0.1% and 0.2% Chlorella sp. culture solution was significantly increased the length (more than 43.0%), the thickness (more than 0.5~0.7 mm), fresh weight (more than 2.9~3.7 g) compared to non-treated control in vitro. In organic soybean sprouts farm, the 0.2% chlorella culture solution applied to mass culture of soybean sprout and the fresh weight of soybean sprouts increased by more than 25% and the yield was very high as 598.33% compared to untreated control. In addition of sensory test, there is no fishy odor and better crunchy texture and nutty flavor for the treatment soybean sprouts compared to untreated soybean sprouts. Particularly, free-radical scavenging activity (DPPH) and superoxide dismutase activity (SOD) of the soybean sprouts were significantly increased more than 26.1% and 40.4%, respectively by treated with 0.1% and 0.2% Chlorella culture solution. Consequently, the treatment of chlorella culture solution to grow soybean sprouts is also promoting quality and antioxidant activity as well as promoting the growth of sprouts. Therefore, chlorella is considered to be worth as functional materials for high-quality sprouts grown.

Ternary Blend Organic Solar Cells Trends based on PM6:Y6 (PM6:Y6를 기반으로 한 삼중 혼합 유기 태양전지 동향)

  • Dong Hwan Yun;Gwang Yong Shin;Yun Hye Jung;YeongWoo Ha;Gi-Hwan Kim
    • Current Photovoltaic Research
    • /
    • v.11 no.3
    • /
    • pp.79-86
    • /
    • 2023
  • As we strive to mitigate the environmental impact caused by the use of fossil fuels, the exploration of alternative energy sources has gained significant attention. Solar energy, in particular, has emerged as a promising solution due to its eco-friendly nature and virtually limitless availability. Among the various types of solar cells that harness this abundant energy source, organic solar cells have garnered considerable interest. Organic solar cells feature a photo-active layer composed of organic semiconductors, offering a range of appealing advantages such as cost-effectiveness, flexibility, translucency, and the ability to produce customizable colors. However, the commercialization of organic solar cells has been impeded by certain challenges, notably their relatively low efficiency and stability. To overcome these obstacles and pave the way for wider adoption, researchers have been exploring innovative approaches, including the implementation of ternary blend organic solar cells. This strategy involves introducing a third component into the photo-active layer alongside the organic semiconductors, with the aim of enhancing the overall performance of the solar cell. In this paper, we delve into the issues associated with organic solar cells and focus on one potential solution: ternary blend organic solar cells. Specifically, we examine the application of this approach to PM6:Y6, which stands as one of the most popular combinations of organic semiconductors. By investigating the potential of ternary blends, particularly utilizing PM6:Y6, we aim to accelerate the commercialization of organic solar cells.

Characteristics of CIGS film fabricated by non-vacuum process (비 진공으로 제작한 CIGS 박막 특성)

  • Park, Myoung-Guk;Ahn, Se-Jin;Yoon, Jea-Ho;Gwak, Ji-Hye;Kim, Dong-Hwan;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.19-22
    • /
    • 2009
  • A non-vacuum process for fabrication of $CuIn_xGa_{1-x}Se_2$ (CIGS) absorber layer from the corresponing Cu, In, Ga solution precursors was described. Cu, In, Ga precursor solution was prepared by a room temperature colloidal route by reacting the starting materials $Cu(NO_3)_2$, $InCl_3$, $Ga(NO_3)$ and methanol. The Cu, In, Ga precursor solution was mixed with ethylcellulose as organic binder material for the rheology of the mixture to be adjusted for the doctor blade method. After depositing the mixture of Cu, In, Ga solution with binder on Mo/glass substrate, the samples were preheated on the hot plate in air to evaporate remaining solvents and to burn the organic binder material. Subsequently, the resultant CIG/Mo/glass sample was selenized in Se evaporation in order to get a solar cell applicable dense CIGS absorber layer. The CIGS absorber layer selenized at $530^{\circ}C$ substrate temperature for 1h with various metal organic ratio.

  • PDF

Au/Titania Composite Nanoparticle Arrays with Controlled Size and Spacing by Organic-Inorganic Nanohybridization in Thin Film Block Copolymer Templates

  • Li, Xue;Fu, Jun;Steinhart, Martin;Kim, Dong-Ha;Knoll, Wolfgang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.1015-1020
    • /
    • 2007
  • A simple approach to prepare arrays of Au/TiO2 composite nanoparticles by using Au-loaded block copolymers as templates combined with a sol-gel process is described. The organic-inorganic hybrid films with closely packed inorganic nanodomains in organic matrix are produced by spin coating the mixtures of polystyrene-block-poly(ethylene oxide) (PS-b-PEO)/HAuCl4 solution and sol-gel precursor solution. After removal of the organic matrix with deep UV irradiation, arrays of Au/TiO2 composite nanoparticles with different compositions or particle sizes can be easily produced. Different photoluminescence (PL) emission spectra from an organic-inorganic hybrid film and arrays of Au/TiO2 composite nanoparticles indicate that TiO2 and Au components exist as separate state in the initial hybrid film and form composite nanoparticles after the removal of the block copolymer matrix.

Effects of Organic Materials, Chitosan, Wood Vinegar, and EM Active Solution on Soil Microbial and Growth in Chinese Cabbage (유기농자재인 키토산, 목초액 및 EM 활성액의 처리에 따른 배추의 생육과 토양 미생물상에 미치는 영향)

  • Jeong, Soon-Jae;Cho, Mi-Yong;Seok, Woon-Young;Lee, Sang-Lok;Lee, Hyoung-Joo;Oh, Ju-Sung
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.584-588
    • /
    • 2011
  • This study was conducted to investigate the effects of organic materials, chitosan, wood vinegar, and EM active solution, on soil microbial and growth in Chinese cabbage. The organic materials were treated with chitosan, wood vinegar, and EM (effective microoganism) active solution, and the treatment concentration was 100 times solution and 1,000 times solution level with foliar application. The results are summarized as follows: Among foliar application of organic materials treatment plot[?], with 1,000 times solution level of chitosan was effective in inhibiting microbial growth in Chinese cabbage compared to other plots and control. The microorganism number in the soil for cultivation of Chinese cabbage increased with organic materials treatment plot as compared with control. Especially, 1,000 times solution level of chitosan showed the most significant effect.

Lead Induced Organic Acid Exudation and Citrate Enhanced Pb Uptake in Hydroponic System

  • Kim, Kwon-Rae;Owens, Gary;Naidu, Ravi;Kwon, Soon-Ik;Kim, Kye-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.146-157
    • /
    • 2009
  • The influence of Pb-citrate complex formation on Pb uptake and the effect of Pb on organic acid exudation were investigated using four plant species, viz., sunflower (Helianthus annuus L), Indian mustard (Brassica juncea), canola (Brassica napus) and vetiver grass (Vetiveria zizanioides) under hydroponic conditions. Seedlings were exposed to different levels of Pb and Pb-citrate for 24 hrs and subsequently Pb distributions in plant shoot, root and hydroponic solution were measured. The dissolved organic carbon (DOC) concentration generally decreased as the concentration of Pb in the hydroponic solution increased. In contrast to DOC, the total organic acid concentrations exuded from Indian mustard roots significantly increased (424 to 6656 mg $kg^{-1}$) with increased Pb treatment, implying that exuding organic acids were involved in Pb accumulation in Indian mustard. The complexation of Pb with citrate enhanced Pb accumulation in the above ground portions. Lead concentration in Indian mustard increased from 2.05 mg $kg^{-1}$ to 6.42 mg $kg^{-1}$ when the concentration of citrate in solution increased from 0 to 50 mg $L^{-1}$. This result showed enhanced translocation of Pb from root to shoot with observation of transfer coefficient ($K_t$) increase from 2.03E-3 to 5.72E-3.

Synthesis of IZTO(Indium Zinc Tin Oxide) particle by spray pyrolysis and post-heat treatment and characterization of deposited IZTO film

  • Lim, Seong Taek;Kim, Sang Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.734-740
    • /
    • 2016
  • The micron-sized indium zinc tin oxide (IZTO) particles were prepared by spray pyrolysis from aqueous precursor solution for indium, zinc, and tin and organic additives such as citric acid (CA) and ethylene glycol (EG) were added to aqueous precursor solution for indium, zinc, and tin. The obtained IZTO particles prepared by spray pyrolysis from the aqueous solution without organic additives had spherical and filled morphologies, whereas the IZTO particles obtained with organic additives had more hollow and porous morphologies. The micron-sized IZTO particles with organic additives were changed fully to nano-sized IZTO particles, whereas the micron-sized IZTO particles without organic additives were not changed fully to nano-sized IZTO particle after post-treatment at $700^{\circ}C$ for 2 hours and wet-ball milling for 24 hours. Surface resistances of micron-sized IZTO's before post-heat treatment and wet-ball milling were much higher than those of nano-sized IZTO's after post-heat treatment and wet-ball milling. From IZTO with composition of 80 wt. % $In_2O_3$, 10 wt. % ZnO, and 10 wt. % $SnO_2$ which showed a smallest surface resistance IZTO after post-heat treatment and wet-ball milling, thin films were deposited on glass substrates by pulsed DC magnetron sputtering, and the electrical and optical properties were investigated.

Recent Trends in Low-Temperature Solution-Based Flexible Organic Synaptic Transistors Fabrication Processing (저온 용액 기반 유연 유기 시냅스 트랜지스터 제작 공정의 최근 연구 동향)

  • Kwanghoon Kim;Eunho Lee;Daesuk Bang
    • Journal of Adhesion and Interface
    • /
    • v.25 no.2
    • /
    • pp.43-49
    • /
    • 2024
  • In recent years, the flexible organic synaptic transistor (FOST) has garnered attention for its flexibility, biocompatibility, ease of processability, and reduced complexity, which arise from using organic semiconductors as channel layers. These transistors can emulate the plasticity of the human brain with a simpler structure and lower fabrication costs compared to conventional inorganic synaptic devices. This makes them suitable for applications in next-generation wearable devices and soft robotics technologies. In FOST, the organic substrate is sensitive to the device preparation temperature; high-temperature treatment processes can cause thermal deformation of the organic substrate. Therefore, low-temperature solution-based processing techniques are essential for fabricating high-performance devices. This review summarizes the current research status of low-temperature solution-based FOST devices and presents the problems and challenges that need to be addressed.