DOI QR코드

DOI QR Code

Ternary Blend Organic Solar Cells Trends based on PM6:Y6

PM6:Y6를 기반으로 한 삼중 혼합 유기 태양전지 동향

  • Dong Hwan Yun (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Gwang Yong Shin (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Yun Hye Jung (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • YeongWoo Ha (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Gi-Hwan Kim (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
  • 윤동환 (나노신소재융합공학과, 경상국립대학교) ;
  • 신광용 (나노신소재융합공학과, 경상국립대학교) ;
  • 정윤혜 (나노신소재융합공학과, 경상국립대학교) ;
  • 하영우 (나노신소재융합공학과, 경상국립대학교) ;
  • 김기환 (나노신소재융합공학과, 경상국립대학교)
  • Received : 2023.06.08
  • Accepted : 2023.07.27
  • Published : 2023.09.30

Abstract

As we strive to mitigate the environmental impact caused by the use of fossil fuels, the exploration of alternative energy sources has gained significant attention. Solar energy, in particular, has emerged as a promising solution due to its eco-friendly nature and virtually limitless availability. Among the various types of solar cells that harness this abundant energy source, organic solar cells have garnered considerable interest. Organic solar cells feature a photo-active layer composed of organic semiconductors, offering a range of appealing advantages such as cost-effectiveness, flexibility, translucency, and the ability to produce customizable colors. However, the commercialization of organic solar cells has been impeded by certain challenges, notably their relatively low efficiency and stability. To overcome these obstacles and pave the way for wider adoption, researchers have been exploring innovative approaches, including the implementation of ternary blend organic solar cells. This strategy involves introducing a third component into the photo-active layer alongside the organic semiconductors, with the aim of enhancing the overall performance of the solar cell. In this paper, we delve into the issues associated with organic solar cells and focus on one potential solution: ternary blend organic solar cells. Specifically, we examine the application of this approach to PM6:Y6, which stands as one of the most popular combinations of organic semiconductors. By investigating the potential of ternary blends, particularly utilizing PM6:Y6, we aim to accelerate the commercialization of organic solar cells.

Keywords

Acknowledgement

본 연구는 이공분야기초연구사업- 기본연구(NRF-2022R1F1A1069529)와 스마트센서 전문인력양성(N0001415182419)의 지원으로 수행되었습니다.

References

  1. Changhyun Pang, Geunhee Park, Dong-geun Jung, Heeyeop Chae, "Recent Development Status of Organic Solar Cells," Applied Science and Convergence Technology, 16.3, 167-171 (2007). https://doi.org/10.5757/JKVS.2007.16.3.167
  2. Yu, G., Gao, J., Hummelen, J. C., Wudl, F., Heeger, A. J., "Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science, 270(5243), 1789-1791 (1995).
  3. Wang, X., Perzon, E., Delgado, J. L., de la Cruz, P., Zhang, F., Langa, F., Inganas, O., "Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative," Applied physics letters, 85(21), 5081-5083 (2004). https://doi.org/10.1063/1.1825070
  4. Won Suk Shin, Sung-Ho Jin, "Recent Development of Polymer Solar Cells," Polymer Science and Technology, 17(4), 416-424 (2006).
  5. Ma, W., Yang, C., Gong, X., Lee, K., Heeger, A. J., "Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology," Advancsed functional materials, 15(10), 1617-1622 (2005). https://doi.org/10.1002/adfm.200500211
  6. Tang, Ching W., "Two-layer organic photovoltaic cell," Applied physics letters, 48(2), 183-185 (1986). https://doi.org/10.1063/1.96937
  7. Kim, G. A., Yun, D., Park, M. J., Gong, M., Park, K. H., Jeong, D. W., Kim, G. H., "Utilize the UV-Visible Region for Reduction of NO by Methylene Blue-Doped TiO2 for Photocatalysis," Transactions on Electrical and Electronic Materials, 23(6), 588-594 (2022). https://doi.org/10.1007/s42341-022-00417-5
  8. Wohrle, Dieter, Dieter Meissner, "Organic solar cells," Advanced Materials, 3(3), 129-138 (1991). https://doi.org/10.1002/adma.19910030303
  9. Nelson, Jenny, "Organic photovoltaic films," Current Opinion in Solid State and Materials Science, 6(1), 87-95 (2002). https://doi.org/10.1016/S1359-0286(02)00006-2
  10. Yu-eun Kim, Gi-Hwan Kim, "Trend Efficiency of Organic Solar Cells with Respect to the Types of Photoactive Layer," J. Korean Inst. Electr. Electron. Mater. Eng, 35(6), 581-593 (2022).
  11. Lee HK, Song CE, Lee SK, Lee JC, Shin WS, "Trends of Organic Solar Cell Development," Korean Industrial Chemistry News, 20(2), 36-58 (2017).
  12. Bi, P., Zhang, S., Wang, J., Ren, J., Hou, J., "Progress in organic solar cells: materials, physics and device engineering," Chinese Journal of Chemistry, 39(9), 2607-2625 (2021).
  13. Yu, G., Alan J. Heeger, "Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions," Journal of Applied Physics, 78(7), 4510-4515 (1995). https://doi.org/10.1063/1.359792
  14. Li, Gang, Rui Zhu, Yang Yang, "Polymer solar cells," Nature photonics, 6(3), 153-161 (2012). https://doi.org/10.1038/nphoton.2012.11
  15. Ahn Seung Kyu, Shin Kee Shik Yoon Kyung Hoon, "Performance Evaluation Technique for Solar Cells (Measurement and Correction)," Polymer Science and Technology, 22(6), 570-576 (2011).
  16. Thompson, B. C., Frechet, J. M., "Polymer-fullerene composite solar cells," Angewandte chemie international edition, 47(1), 58-77 (2008). https://doi.org/10.1002/anie.200702506
  17. Gereanu, A. G., Sartorio, C., Bonasera, A., Giuliano, G., Cataldo, S., Scopelliti, M., ... Pignataro, B., "Pseudo-planar organic heterojunc tions by sequential printing of quasi-miscible inks," Coatings, 11(5), 586 (2021).
  18. Halls, J. J., Pichler, K., Friend, R. H., Moratti, S. C., Holmes, A. B., "Exciton diffusion and dissociation in a poly (p-phenylenevinylene)/C60 heterojunction photovoltaic cell," Applied Physics Letters, 68(22), 3120-3122 (1996). https://doi.org/10.1063/1.115797
  19. Mikhnenko, O. V., Blom, P. W., Nguyen, T. Q., "Exciton diffusion in organic semiconductors," Energy & Environmental Science, 8(7), 1867-1888 (2015).
  20. Zhang, Y., Li, G., "Functional third components in nonfullerene acceptor-based ternary organic solar cells," Accounts of Materials Research, 1(2), 158-171 (2020). https://doi.org/10.1021/accountsmr.0c00033
  21. Yuan, J., Zhang, Y., Zhou, L., Zhang, G., Yip, H. L., Lau, T. K., ... Zou, Y., "Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron deficient core," Joule, 3(4), 1140-1151 (2019). https://doi.org/10.1016/j.joule.2019.01.004
  22. Qin, Y., Balar, N., Peng, Z., Gadisa, A., Angunawela, I., Bagui, A., ... Ade, H., "The performance-stability conundrum of BTP-based organic solar cells," Joule, 5(8), 2129-2147 (2021). https://doi.org/10.1016/j.joule.2021.06.006
  23. Ye, L., Collins, B. A., Jiao, X., Zhao, J., Yan, H., Ade, H., "Miscibility-function relations in organic solar cells: significance of optimal miscibility in relation to percolation," Advanced Energy Materials, 8(28), 1703058 (2018).
  24. Piersimoni, F., Degutis, G., Bertho, S., Vandewal, K., Spoltore, D., Vangerven, T., Drijkonin., Van Bael, MK., Hardy, A., D'Haen, J., Maes, W., Vanderzande, D., Nesladek, M., Manca. J., "Influence of fullerene photodimerization on the PCBM crystallization in polymer: fullerene bulk heterojunctions under thermal stress," Journal of Polymer Science Part B: Polymer Physics, 51(16), 1209-1214 (2013).
  25. Groves, C., "Suppression of geminate charge recombination in organic photovoltaic devices with a cascaded energy heterojunction," Energy & Environmental Science, 6(5), 1546-1551 (2013).
  26. J'rgensen, M., Norrman, K., Gevorgyan, S. A., Tromholt, T., Andreasen, B., Krebs, F. C., "Stability of polymer solar cells," Advanced materials, 24(5), 580-612 (2012). https://doi.org/10.1002/adma.201104187
  27. Lai, Y. Y., Cheng, Y. J., Hsu, C. S., "Applications of functional fullerene materials in polymer solar cells," Energy & Environmental Science, 7(6), 1866-1883 (2014).
  28. Nielsen, C. B., Holliday, S., Chen, H. Y., Cryer, S. J., McCulloch, I., "Non-fullerene electron acceptors for use in organic solar cells," Accounts of chemical research, 48(11), 2803-2812 (2015). https://doi.org/10.1021/acs.accounts.5b00199
  29. Li, H., Hwang, Y. J., Courtright, B. A., Eberle, F. N., Subramaniyan, S., Jenekhe, S. A., "Fine-tuning the 3D structure of nonfullerene electron acceptors toward high-performance polymer solar cells," Advanced materials, 27(21), 3266-3272 (2015). https://doi.org/10.1002/adma.201500577
  30. Proctor, C. M., Kuik, M., Nguyen, T.Q., "Charge carrier recombination in organic solar cells," Progress in Polymer Science, 38(12), 1941-1960 (2013). https://doi.org/10.1016/j.progpolymsci.2013.08.008
  31. Pivrikas, A., Sariciftci, N. S., Juska, G., Osterbacka, R., "A review of charge transport and recombination in polymer/ fullerene organic solar cells," Progress in Photovoltaics: Research and Applications, 15(8), 677-696 (2007).
  32. Ghasemi, M., Hu, H., Peng, Z., Rech, J. J., Angunawela, I., Carpenter, J. H., Stuard, S.J., Wadsworth, A., McCulloch, I,. You, W., Ade, H., "Delineation of thermodynamic and kinetic factors that control stability in non-fullerene organic solar cells," Joule, 3(5), 1328-1348 (2019). https://doi.org/10.1016/j.joule.2019.03.020
  33. Tu, S., Lin, X., Xiao, L., Zhen, H., Wang, W., Ling, Q., "Boosting the overall stability of organic solar cells by crosslinking vinyl-functionalized polymer derived from PM6," Materials Chemistry Frontiers, 6(9), 1150-1160 (2022). https://doi.org/10.1039/D2QM00162D
  34. Li, N., Perea, J. D., Kassar, T., Richter, M., Heumueller, T., Matt, G. J., Hou, Y., Guldal, N.S., Chen, H., Chen, S., Langner, S., Berlinghof, M., Unruh, T., Brabec, C. J., "Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing," Nature communications, 8(1), 14541 (2017).
  35. Lee, J., Kim, J. W., Park, S. A., Son, S. Y., Choi, K., Lee, W., Kim, W., Kim, J. Y., Park, T., "Study of burn-in loss in green solvent-processed ternary blended organic photovoltaics derived from UV-crosslinkable semiconducting polymer s and nonfullerene acceptors," Advanced Energy Materials, 9(34), 1901829 (2019).
  36. Li, S., Zhang, R., Zhang, M., Yao, J., Peng, Z., Chen, Q., Zhang, C., Chang, B., Bai, Yang., Fu, H., Ouyang, Yanni., Zhang, C., Steele, J. A., Alshahrani, T., Roeffaers, M. B. J., Solano, E., Meng, L., Gao, F., Li, Y., Zhang, Z. G., "Tethered Small-Molecule Acceptors Simultaneously Enhance the Efficiency and Stability of Polymer Solar Cells," Advanced Materials, 35(2), 2206563 (2023).
  37. Zhang, C., Zhang, M., Zhou, Q., Chen, S., Kim, S., Yao, J., Zhang, Z., Bai, Y., Chen, Q., Chang, B., Fu, H., Xue, L., Wang, C., Zhang, Z. G., "Diffusion-Limited Accepter Alloy Enables Highly Efficient and Stable Organic Solar Cells," Advanced Functional Materials, 2214392 (2023).
  38. Ghasemi, M., Balar, N., Peng, Z., Hu, H., Qin, Y., Kim, T., Rech, J. J., Bidwell, M., Mask, Walker., McCulloch, I., You, W., Amassian, A., Risko, C., O'Connor, B. T., Ade, H., "A molecular interaction-diffusion framework for predicting organic solar cell stability," Nature materials, 20(4), 525-532 (2021). https://doi.org/10.1038/s41563-020-00872-6
  39. Zhang, W., Huang, J., Xu, J., Han, M., Su, D., Wu, N., Zhang, C., Xu, A., Zhan, C., "Phthalimide polymer donor guests enable over 17% efficient organic solar cells via parallel-like ternary and quaternary strategies," Advanced Energy Materials, 10(32), 2001436 (2020).
  40. Yan, C., Barlow, S., Wang, Z., Yan, H., Jen, A. K. Y., Marder, S. R., Zhan, X., "Non-fullerene acceptors for organic solar cells," Nature Reviews Materials, 3(3), 1-19 (2018). https://doi.org/10.1038/natrevmats.2018.3
  41. Guo, Q., Guo, Q., Geng, Y., Tang, A., Zhang, M., Du, M., Sun, X., Zhou, E., "Recent advances in PM6: Y6-based organic solar cells," Materials Chemistry Frontiers, 5(8), 3257-3280 (2021).
  42. Pan, M. A., Lau, T. K., Tang, Y., Wu, Y. C., Liu, T., Li, K., Chen, M. C., Lu, X., Ma, W., Zhan, C., "16.7%-efficiency ternary blended organic photovoltaic cells with PCBM as the acceptor additive to increase the open-circuit voltage and phase purity," Journal of Materials Chemistry A, 7(36), 20713-20722 (2019). https://doi.org/10.1039/C9TA06929A
  43. Yu, L., Zhang, M., Tang, J., Li, R., Xu, X., Peng, Q., "Wide Bandgap Perylene Diimide Derivatives as an Effective Third Component for Parallel Connected Ternary Blend Polymer Solar Cells," Chemistry of Materials, 33(18), 7396-7407 (2021). https://doi.org/10.1021/acs.chemmater.1c02007
  44. Yan, T., Ge, J., Lei, T., Zhang, W., Song, W., Fanady, B., ... Ge, Z., "16.55% efficiency ternary organic solar cells enabled by incorporating a small molecular donor," Journal of Materials Chemistry A, 7(45), 25894-25899 (2019). https://doi.org/10.1039/C9TA10145D
  45. Yan, C., Tang, H., Ma, R., Zhang, M., Liu, T., Lv, J., Huang, J., Yang, Y. K., Xu, T., Kan, Z., Yan, He., Liu, F., Lu, S., Li, G., "Synergy of liquid-crystalline small-molecule and polymeric donors delivers uncommon morphology evolution and 16.6% efficiency organic photovoltaics," Advanced Science, 7(15), 2000149 (2020).
  46. Ni, M. Y., Leng, S. F., Liu, H., Yang, Y. K., Li, Q. H., Sheng, C. Q., Lu, X., Liu, F., Wan, J. H., "Ternary organic solar cells with 16.88% efficiency enabled by a twisted perylene diimide derivative to enhance the open-circuit voltage," Journal of Materials Chemistry C, 9(11), 3826-3834 (2021). https://doi.org/10.1039/D0TC05691J
  47. Liu, F., Zhou, L., Liu, W., Zhou, Z., Yue, Q., Zheng, W., Sun, R., Liu, W., Xu, S., Fan, H., Feng, L., Yi, Y., Zhang, W., Zhu, X., "Organic solar cells with 18% efficiency enabled by an alloy acceptor: a two-in-one strategy," Advanced Materials, 33(27), 2100830 (2021).
  48. Xiong, M., Wu, J., Fan, Q., Liu, Q., Lv, J., Ou, X., Guo, X., Zhang, M., "Ternary organic solar cells with improved efficiency and stability enabled by compatible dual-acceptor strategy," Organic Electronics, 96, 106227 (2021).
  49. Zhang, S., Ma, X., Xu, C., Xu, W., Jeong, S. Y., Woo, H. Y., Zhou, Z., Zhang, X., Zhang, F., "Boosted efficiency over 18.1% of polymer solar cells by employing large extinction coefficients material as the third component," Macromolecular Rapid Communi cations, 43(15), 2200345 (2022).
  50. Chen, J., Cao, J., Liu, L., Xie, L., Zhou, H., Zhang, J., Zhang, K., Xiao, M., Huang, F., "Layer-by-layer processed PM6: Y6- based stable ternary polymer solar cells with improved efficiency over 18% by incorporating an asymmetric thieno[3,2-b] indole -based acceptor," Advanced Functional Materials, 32(25), 2200629 (2022).
  51. Yin, Y., Zhan, L., Liu, M., Yang, C., Guo, F., Liu, Y., Gao, S., Zhao, L., Chen, H., Zhang, Y., "Boosting photovoltaic performance of ternary organic solar cells by integrating a multi-functional guest acceptor," Nano Energy, 90, 106538 (2021).
  52. An, Q., Wang, J., Gao, W., Ma, X., Hu, Z., Gao, J., Xu, C., Hao, M., Zhang, X., Yang, C., Zhang, F., "Alloy-like ternary polymer solar cells with over 17.2% efficiency," Science Bulletin, 65(7), 538-545 (2020). https://doi.org/10.1016/j.scib.2020.01.012
  53. Zhan, L., Li, S., Lau, T. K., Cui, Y., Lu, X., Shi, M., Li, C. Z., Li, H., Hou, J., Chen, H., "Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model," Energy & Environmental Science, 13 (2), 635-645 (2020).