Acknowledgement
본 연구는 이공분야기초연구사업- 기본연구(NRF-2022R1F1A1069529)와 스마트센서 전문인력양성(N0001415182419)의 지원으로 수행되었습니다.
References
- Changhyun Pang, Geunhee Park, Dong-geun Jung, Heeyeop Chae, "Recent Development Status of Organic Solar Cells," Applied Science and Convergence Technology, 16.3, 167-171 (2007). https://doi.org/10.5757/JKVS.2007.16.3.167
- Yu, G., Gao, J., Hummelen, J. C., Wudl, F., Heeger, A. J., "Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science, 270(5243), 1789-1791 (1995). https://doi.org/10.1126/science.270.5243.1789
- Wang, X., Perzon, E., Delgado, J. L., de la Cruz, P., Zhang, F., Langa, F., Inganas, O., "Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative," Applied physics letters, 85(21), 5081-5083 (2004). https://doi.org/10.1063/1.1825070
- Won Suk Shin, Sung-Ho Jin, "Recent Development of Polymer Solar Cells," Polymer Science and Technology, 17(4), 416-424 (2006).
- Ma, W., Yang, C., Gong, X., Lee, K., Heeger, A. J., "Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology," Advancsed functional materials, 15(10), 1617-1622 (2005). https://doi.org/10.1002/adfm.200500211
- Tang, Ching W., "Two-layer organic photovoltaic cell," Applied physics letters, 48(2), 183-185 (1986). https://doi.org/10.1063/1.96937
- Kim, G. A., Yun, D., Park, M. J., Gong, M., Park, K. H., Jeong, D. W., Kim, G. H., "Utilize the UV-Visible Region for Reduction of NO by Methylene Blue-Doped TiO2 for Photocatalysis," Transactions on Electrical and Electronic Materials, 23(6), 588-594 (2022). https://doi.org/10.1007/s42341-022-00417-5
- Wohrle, Dieter, Dieter Meissner, "Organic solar cells," Advanced Materials, 3(3), 129-138 (1991). https://doi.org/10.1002/adma.19910030303
- Nelson, Jenny, "Organic photovoltaic films," Current Opinion in Solid State and Materials Science, 6(1), 87-95 (2002). https://doi.org/10.1016/S1359-0286(02)00006-2
- Yu-eun Kim, Gi-Hwan Kim, "Trend Efficiency of Organic Solar Cells with Respect to the Types of Photoactive Layer," J. Korean Inst. Electr. Electron. Mater. Eng, 35(6), 581-593 (2022).
- Lee HK, Song CE, Lee SK, Lee JC, Shin WS, "Trends of Organic Solar Cell Development," Korean Industrial Chemistry News, 20(2), 36-58 (2017).
- Bi, P., Zhang, S., Wang, J., Ren, J., Hou, J., "Progress in organic solar cells: materials, physics and device engineering," Chinese Journal of Chemistry, 39(9), 2607-2625 (2021). https://doi.org/10.1002/cjoc.202000666
- Yu, G., Alan J. Heeger, "Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions," Journal of Applied Physics, 78(7), 4510-4515 (1995). https://doi.org/10.1063/1.359792
- Li, Gang, Rui Zhu, Yang Yang, "Polymer solar cells," Nature photonics, 6(3), 153-161 (2012). https://doi.org/10.1038/nphoton.2012.11
- Ahn Seung Kyu, Shin Kee Shik Yoon Kyung Hoon, "Performance Evaluation Technique for Solar Cells (Measurement and Correction)," Polymer Science and Technology, 22(6), 570-576 (2011).
- Thompson, B. C., Frechet, J. M., "Polymer-fullerene composite solar cells," Angewandte chemie international edition, 47(1), 58-77 (2008). https://doi.org/10.1002/anie.200702506
- Gereanu, A. G., Sartorio, C., Bonasera, A., Giuliano, G., Cataldo, S., Scopelliti, M., ... Pignataro, B., "Pseudo-planar organic heterojunc tions by sequential printing of quasi-miscible inks," Coatings, 11(5), 586 (2021).
- Halls, J. J., Pichler, K., Friend, R. H., Moratti, S. C., Holmes, A. B., "Exciton diffusion and dissociation in a poly (p-phenylenevinylene)/C60 heterojunction photovoltaic cell," Applied Physics Letters, 68(22), 3120-3122 (1996). https://doi.org/10.1063/1.115797
- Mikhnenko, O. V., Blom, P. W., Nguyen, T. Q., "Exciton diffusion in organic semiconductors," Energy & Environmental Science, 8(7), 1867-1888 (2015). https://doi.org/10.1039/C5EE00925A
- Zhang, Y., Li, G., "Functional third components in nonfullerene acceptor-based ternary organic solar cells," Accounts of Materials Research, 1(2), 158-171 (2020). https://doi.org/10.1021/accountsmr.0c00033
- Yuan, J., Zhang, Y., Zhou, L., Zhang, G., Yip, H. L., Lau, T. K., ... Zou, Y., "Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron deficient core," Joule, 3(4), 1140-1151 (2019). https://doi.org/10.1016/j.joule.2019.01.004
- Qin, Y., Balar, N., Peng, Z., Gadisa, A., Angunawela, I., Bagui, A., ... Ade, H., "The performance-stability conundrum of BTP-based organic solar cells," Joule, 5(8), 2129-2147 (2021). https://doi.org/10.1016/j.joule.2021.06.006
- Ye, L., Collins, B. A., Jiao, X., Zhao, J., Yan, H., Ade, H., "Miscibility-function relations in organic solar cells: significance of optimal miscibility in relation to percolation," Advanced Energy Materials, 8(28), 1703058 (2018).
- Piersimoni, F., Degutis, G., Bertho, S., Vandewal, K., Spoltore, D., Vangerven, T., Drijkonin., Van Bael, MK., Hardy, A., D'Haen, J., Maes, W., Vanderzande, D., Nesladek, M., Manca. J., "Influence of fullerene photodimerization on the PCBM crystallization in polymer: fullerene bulk heterojunctions under thermal stress," Journal of Polymer Science Part B: Polymer Physics, 51(16), 1209-1214 (2013). https://doi.org/10.1002/polb.23330
- Groves, C., "Suppression of geminate charge recombination in organic photovoltaic devices with a cascaded energy heterojunction," Energy & Environmental Science, 6(5), 1546-1551 (2013). https://doi.org/10.1039/c3ee24455e
- J'rgensen, M., Norrman, K., Gevorgyan, S. A., Tromholt, T., Andreasen, B., Krebs, F. C., "Stability of polymer solar cells," Advanced materials, 24(5), 580-612 (2012). https://doi.org/10.1002/adma.201104187
- Lai, Y. Y., Cheng, Y. J., Hsu, C. S., "Applications of functional fullerene materials in polymer solar cells," Energy & Environmental Science, 7(6), 1866-1883 (2014). https://doi.org/10.1039/c3ee43080d
- Nielsen, C. B., Holliday, S., Chen, H. Y., Cryer, S. J., McCulloch, I., "Non-fullerene electron acceptors for use in organic solar cells," Accounts of chemical research, 48(11), 2803-2812 (2015). https://doi.org/10.1021/acs.accounts.5b00199
- Li, H., Hwang, Y. J., Courtright, B. A., Eberle, F. N., Subramaniyan, S., Jenekhe, S. A., "Fine-tuning the 3D structure of nonfullerene electron acceptors toward high-performance polymer solar cells," Advanced materials, 27(21), 3266-3272 (2015). https://doi.org/10.1002/adma.201500577
- Proctor, C. M., Kuik, M., Nguyen, T.Q., "Charge carrier recombination in organic solar cells," Progress in Polymer Science, 38(12), 1941-1960 (2013). https://doi.org/10.1016/j.progpolymsci.2013.08.008
- Pivrikas, A., Sariciftci, N. S., Juska, G., Osterbacka, R., "A review of charge transport and recombination in polymer/ fullerene organic solar cells," Progress in Photovoltaics: Research and Applications, 15(8), 677-696 (2007). https://doi.org/10.1002/pip.791
- Ghasemi, M., Hu, H., Peng, Z., Rech, J. J., Angunawela, I., Carpenter, J. H., Stuard, S.J., Wadsworth, A., McCulloch, I,. You, W., Ade, H., "Delineation of thermodynamic and kinetic factors that control stability in non-fullerene organic solar cells," Joule, 3(5), 1328-1348 (2019). https://doi.org/10.1016/j.joule.2019.03.020
- Tu, S., Lin, X., Xiao, L., Zhen, H., Wang, W., Ling, Q., "Boosting the overall stability of organic solar cells by crosslinking vinyl-functionalized polymer derived from PM6," Materials Chemistry Frontiers, 6(9), 1150-1160 (2022). https://doi.org/10.1039/D2QM00162D
- Li, N., Perea, J. D., Kassar, T., Richter, M., Heumueller, T., Matt, G. J., Hou, Y., Guldal, N.S., Chen, H., Chen, S., Langner, S., Berlinghof, M., Unruh, T., Brabec, C. J., "Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing," Nature communications, 8(1), 14541 (2017).
- Lee, J., Kim, J. W., Park, S. A., Son, S. Y., Choi, K., Lee, W., Kim, W., Kim, J. Y., Park, T., "Study of burn-in loss in green solvent-processed ternary blended organic photovoltaics derived from UV-crosslinkable semiconducting polymer s and nonfullerene acceptors," Advanced Energy Materials, 9(34), 1901829 (2019).
- Li, S., Zhang, R., Zhang, M., Yao, J., Peng, Z., Chen, Q., Zhang, C., Chang, B., Bai, Yang., Fu, H., Ouyang, Yanni., Zhang, C., Steele, J. A., Alshahrani, T., Roeffaers, M. B. J., Solano, E., Meng, L., Gao, F., Li, Y., Zhang, Z. G., "Tethered Small-Molecule Acceptors Simultaneously Enhance the Efficiency and Stability of Polymer Solar Cells," Advanced Materials, 35(2), 2206563 (2023).
- Zhang, C., Zhang, M., Zhou, Q., Chen, S., Kim, S., Yao, J., Zhang, Z., Bai, Y., Chen, Q., Chang, B., Fu, H., Xue, L., Wang, C., Zhang, Z. G., "Diffusion-Limited Accepter Alloy Enables Highly Efficient and Stable Organic Solar Cells," Advanced Functional Materials, 2214392 (2023).
- Ghasemi, M., Balar, N., Peng, Z., Hu, H., Qin, Y., Kim, T., Rech, J. J., Bidwell, M., Mask, Walker., McCulloch, I., You, W., Amassian, A., Risko, C., O'Connor, B. T., Ade, H., "A molecular interaction-diffusion framework for predicting organic solar cell stability," Nature materials, 20(4), 525-532 (2021). https://doi.org/10.1038/s41563-020-00872-6
- Zhang, W., Huang, J., Xu, J., Han, M., Su, D., Wu, N., Zhang, C., Xu, A., Zhan, C., "Phthalimide polymer donor guests enable over 17% efficient organic solar cells via parallel-like ternary and quaternary strategies," Advanced Energy Materials, 10(32), 2001436 (2020).
- Yan, C., Barlow, S., Wang, Z., Yan, H., Jen, A. K. Y., Marder, S. R., Zhan, X., "Non-fullerene acceptors for organic solar cells," Nature Reviews Materials, 3(3), 1-19 (2018). https://doi.org/10.1038/natrevmats.2018.3
- Guo, Q., Guo, Q., Geng, Y., Tang, A., Zhang, M., Du, M., Sun, X., Zhou, E., "Recent advances in PM6: Y6-based organic solar cells," Materials Chemistry Frontiers, 5(8), 3257-3280 (2021). https://doi.org/10.1039/D1QM00060H
- Pan, M. A., Lau, T. K., Tang, Y., Wu, Y. C., Liu, T., Li, K., Chen, M. C., Lu, X., Ma, W., Zhan, C., "16.7%-efficiency ternary blended organic photovoltaic cells with PCBM as the acceptor additive to increase the open-circuit voltage and phase purity," Journal of Materials Chemistry A, 7(36), 20713-20722 (2019). https://doi.org/10.1039/C9TA06929A
- Yu, L., Zhang, M., Tang, J., Li, R., Xu, X., Peng, Q., "Wide Bandgap Perylene Diimide Derivatives as an Effective Third Component for Parallel Connected Ternary Blend Polymer Solar Cells," Chemistry of Materials, 33(18), 7396-7407 (2021). https://doi.org/10.1021/acs.chemmater.1c02007
- Yan, T., Ge, J., Lei, T., Zhang, W., Song, W., Fanady, B., ... Ge, Z., "16.55% efficiency ternary organic solar cells enabled by incorporating a small molecular donor," Journal of Materials Chemistry A, 7(45), 25894-25899 (2019). https://doi.org/10.1039/C9TA10145D
- Yan, C., Tang, H., Ma, R., Zhang, M., Liu, T., Lv, J., Huang, J., Yang, Y. K., Xu, T., Kan, Z., Yan, He., Liu, F., Lu, S., Li, G., "Synergy of liquid-crystalline small-molecule and polymeric donors delivers uncommon morphology evolution and 16.6% efficiency organic photovoltaics," Advanced Science, 7(15), 2000149 (2020).
- Ni, M. Y., Leng, S. F., Liu, H., Yang, Y. K., Li, Q. H., Sheng, C. Q., Lu, X., Liu, F., Wan, J. H., "Ternary organic solar cells with 16.88% efficiency enabled by a twisted perylene diimide derivative to enhance the open-circuit voltage," Journal of Materials Chemistry C, 9(11), 3826-3834 (2021). https://doi.org/10.1039/D0TC05691J
- Liu, F., Zhou, L., Liu, W., Zhou, Z., Yue, Q., Zheng, W., Sun, R., Liu, W., Xu, S., Fan, H., Feng, L., Yi, Y., Zhang, W., Zhu, X., "Organic solar cells with 18% efficiency enabled by an alloy acceptor: a two-in-one strategy," Advanced Materials, 33(27), 2100830 (2021).
- Xiong, M., Wu, J., Fan, Q., Liu, Q., Lv, J., Ou, X., Guo, X., Zhang, M., "Ternary organic solar cells with improved efficiency and stability enabled by compatible dual-acceptor strategy," Organic Electronics, 96, 106227 (2021).
- Zhang, S., Ma, X., Xu, C., Xu, W., Jeong, S. Y., Woo, H. Y., Zhou, Z., Zhang, X., Zhang, F., "Boosted efficiency over 18.1% of polymer solar cells by employing large extinction coefficients material as the third component," Macromolecular Rapid Communi cations, 43(15), 2200345 (2022).
- Chen, J., Cao, J., Liu, L., Xie, L., Zhou, H., Zhang, J., Zhang, K., Xiao, M., Huang, F., "Layer-by-layer processed PM6: Y6- based stable ternary polymer solar cells with improved efficiency over 18% by incorporating an asymmetric thieno[3,2-b] indole -based acceptor," Advanced Functional Materials, 32(25), 2200629 (2022).
- Yin, Y., Zhan, L., Liu, M., Yang, C., Guo, F., Liu, Y., Gao, S., Zhao, L., Chen, H., Zhang, Y., "Boosting photovoltaic performance of ternary organic solar cells by integrating a multi-functional guest acceptor," Nano Energy, 90, 106538 (2021).
- An, Q., Wang, J., Gao, W., Ma, X., Hu, Z., Gao, J., Xu, C., Hao, M., Zhang, X., Yang, C., Zhang, F., "Alloy-like ternary polymer solar cells with over 17.2% efficiency," Science Bulletin, 65(7), 538-545 (2020). https://doi.org/10.1016/j.scib.2020.01.012
- Zhan, L., Li, S., Lau, T. K., Cui, Y., Lu, X., Shi, M., Li, C. Z., Li, H., Hou, J., Chen, H., "Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model," Energy & Environmental Science, 13 (2), 635-645 (2020). https://doi.org/10.1039/C9EE03710A