• Title/Summary/Keyword: Organic LED

Search Result 405, Processing Time 0.024 seconds

A study on the growth and the molecular orientation and the surface Characterization of $\alpha$-Sexithiophene thin films by OMBD technique (유기빔성막법을 이용한 $\alpha$-Sexithiophene 박막의 제조 및 분자 배향과 표면 특성에 관한 연구)

  • 권오관;오세운;박미경;김영관;신동명;최종선;손병청
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.328-330
    • /
    • 1997
  • Organic semiconductors such as conjugated polymers and oligomers have been studied many research groups. The band structures of conjugated polymers and oligomers are similar to those of conventional inorganic semiconductors Thin films based on these materials show a promising potential for Field Effect Transistors(FETs) and Light Emitting Diodes(LED) because fabrication processes are simple and cheaper for large electronic devices and flexible devices are also possible.

  • PDF

Contraction-related frequency harmonics in human electrogastrography (위전도에서의 위의 수축과 관련된 주파수 성분에 관한 연구)

  • Han, W.T.;Kim, I.Y.;Kim, W.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.3-5
    • /
    • 1996
  • Electrogastrography(EGG) is the technique by which gastric myoelectrical activity is recorded noninvasively, from electrodes on the abdominal skin. This gastric myoelectrical activity consists of two type signals : 1) slow wave, which is gastric basal rhyemic activity and is not closely related to gastric contraction 2) spike wave, which is generated only during contraction of the stomach. Despite many attempts made over the decades, analysis of surface EGG has not led to identification of the spike wave (gastric contraction) that would help the clinician to diagnose functional or organic diseases of the stomach. In this paper, we propose a feasible methods to detect gastric contraction by frequency-domain signal analysis of surface ECG signal. Synchronous measurement of gastric pressure by the antropyloric manometry with surface EGG established feasibility of this method.

  • PDF

Display Technologies for Immersive Devices and Electronic Skin (디스플레이 현황과 발전방향 -실감 및 스킨 기기로의 확대)

  • Park, Y.J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.2
    • /
    • pp.10-18
    • /
    • 2019
  • Since the introduction of CRT(Cathode Ray Tube) in the 1950s, display technologies have been developed continuously. Flat panel displays such as PDP(Plasma Display Panel) and LCD(Liquid Crystal Display) were commercialized in the late 1990s, and OLED(Organic Light Emitting Diodes) and Micro-LED(Micro-Light Emitting Diodes) are now being developed and are becoming widespread. In the future, we expect to develop ultra-realistic, flexible, embedded sensor displays. Ultra-realistic display can be applied to AR/VR(Augmented Reality/Virtual Reality) devices and spatial light modulators for holography. The sensor-embedded display can be applied to robots; electronic skin; and security devices, including iris recognition sensors, fingerprint recognition sensors, and tactile sensors. AR/VR technology must be developed to meet technical requirements such as viewing angle, resolution, and refresh rate. Holography requires optical modulation technology that can significantly improve resolution, viewing angle, and modulation method to enable wide-view and high-quality hologram stereoscopic images. For electronic skin, stable mass production technology, large-area arrays, and system integration technologies should be developed.

Electrochemical Anodic Formation of VO2 Nanotubes and Hydrogen Sorption Property

  • Lee, Hyeonkwon;Jung, Minji;Oh, Hyunchul;Lee, Kiyoung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.212-216
    • /
    • 2021
  • We investigated the feasibility of hydrogen storage with electrochemically formed VO2 nanotubes. The VO2 nanotubes were fabricated through the anodization of vanadium metal in fluoride ion-containing organic electrolyte followed by an annealing process in an Ar-saturated atmosphere at 673 K for 3 h at a heating rate of 3 K /min. During anodization, the current density significantly increased up to 7.93 mA/cm2 for approximately 500 s owing to heat generation, which led to a fast-electrochemical etching reaction of the outermost part of the nanotubes. By controlling the anodization temperature, highly ordered VO2 nanotubes were grown on the metal substrate without using any binders or adhesives. Furthermore, we demonstrated the hydrogen sorption properties of the anodic VO2 nanotubes.

Optimization of Automated Suspension Trapping Digestion in Bottom-Up Proteomics via Mass Spectrometry

  • Haneul Song;Yejin Jeon;Iyun Choi;Minjoong Joo;Jong-Moon Park;Hookeun Lee
    • Mass Spectrometry Letters
    • /
    • v.15 no.1
    • /
    • pp.62-68
    • /
    • 2024
  • The Suspension Trapping (S-Trap) method has been a prominent sample preparation technique since its introduction in 2014. Its capacity to induce protein aggregation using organic solvents has significantly improved protein purification and facilitated peptide identification. However, its full potential for automation has been limited by the lack of a suitable liquid handling system until recently. In this study, we aimed to enhance the automation of S-Trap sample preparation by optimizing the S-Trap digestion process, incorporating triethylammonium bicarbonate (TEAB) and CaCl2. The utilization of TEAB buffer conditions in this innovative process led to a noteworthy 12% improvement in protein identification. Additionally, through careful observation of various incubation conditions, we streamlined the entire sample preparation workflow into a concise 4 hours timeline, covering reduction, alkylation, and trypsin incubation stages. This refined and expedited automated S-Trap digestion process not only showcased exceptional time efficiency but also improved trypsin digestion, resulting in increased protein identification.

A Study on the Characteristic Analysis of Blue OLED for the Luminous Traffic Safety Mark (발광형 교통안전표지용 청색 OLED의 특성분석에 관한 연구)

  • Kang, Myung-Goo;Kim, Jung-Yeoun;Oh, Hwan-Sool
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.2
    • /
    • pp.138-145
    • /
    • 2007
  • Luminous traffic safety mark is restricted to use only the place that has a thick fog, many night traffic accidents, limited field of view due to structure of road. Recently, LEDs are used for luminous traffic safety mark, but we propose an organic LED for a novel luminous traffic safety mark in the near future. The device structure was $ITO/2-TNATA(500{\AA})/{\alpha}-NPD(200{\AA})/DPVBi(300{\AA})/BCP(10{\AA})/Alq_3(200{\AA})/LiF(10{\AA})/Al:Li(1000{\AA})$. The characteristics of the device are most efficient on occasion of using $N_2$ gas plasma treatment. Current density is $240.71mA/cm^2$ luminance $10,550cd/m^2$, and current efficiency 3.53cd/A at an applied voltage of 10V. The maximum EL wavelength of the fabricated blue organic light-emitting device is 456nm. CIE color coordinates are x=0.1449 and y=0.1633, which is similar to NTSC deep-blue color with CIE color coordinates of x=0.14 and y=0.08.

  • PDF

Characteristics of Strawberry Jam Containing Strawberry Puree (딸기 첨가 수준을 달리한 딸기잼의 품질특성)

  • Kim, Jin-Sook;Kang, Eun-Jung;Chang, Young-Eun;Lee, Ji-Hyun;Kim, Gi-Chang;Kim, Kyung-Mi
    • Korean journal of food and cookery science
    • /
    • v.29 no.6
    • /
    • pp.725-731
    • /
    • 2013
  • This study investigates the quality of strawberry jam containing different quantities of strawberry. Strawberry jam was prepared by the addition of 70-30%(w/w) strawberry puree, Sweetness, pH, total acidity, color, anthocyanin and pectin content, texture, free sugar, and organic acid content of the samples were measured. Decrease in the quantity of the strawberry puree led to a decrease in the following: total acidity(significance value p<0.05), anthocyanin, pectin, total free sugar, frutose, glucose, sucrose, and, organic acid content, namely oxalic acid, citric acid, malic acid, succinic acid, and formic acid. A texture profile analysis showed reduction in the hardness, gumminess, and chewiness of the jam. At the same time, decrease in the puree quantity also led to an increase in the sweetness, pH, L-value, a-value and b-value(significance value p<0.05) of the jam. These results promote, the consumption of fruit that are high in fruit, low in sugar, and do not contain any chemical additives.

Model of Water, Energy and Waste Management for Development of Eco-Innovation Park ; A Case Study of Center for Research of Science and Technology "PUSPIPTEK," South Tangerang City, Indonesia

  • Setiawati, Sri;Alikodra, Hadi;Pramudya, Bambang;Dharmawan, Arya Hadi
    • World Technopolis Review
    • /
    • v.3 no.2
    • /
    • pp.89-96
    • /
    • 2014
  • Center for Research of Science and Technology ("PUSPIPTEK") has 460 hectares land area, still maintained as a green area with more than 30% green space. There are 47 centers for research and testing technology, technology-based industries, and as well as public supporting facilities in PUSPIPTEK area. Based on the concepts developed to make this area as an ecological region, PUSPIPTEK can be seen as a model of eco-innovation. The purpose of this research is to develop a model of water, energy and waste management with eco-innovation concept. As a new approach in addressing environmental degradation and maintaining the sustainability of ecosystem, studies related to eco-innovation policy that combines the management of water, energy and waste in the region has not been done. In order to achieve the objectives of the research, a series of techniques for collecting data on PUSPIPTEK existing conditions will be carried out, which includes utilities data (water, electricity, sewage) and master plan of this area. The savings over the implementation of the concept of eco-innovation in water, energy, and waste management were calculated and analyzed using quatitative methods. The amount of cost savings and feasibility were then calculated. Eco innovation in water management among other innovations include the provision of alternative sources of water, overflow of rain water and water environments utilization, and use of gravity to replace the pumping function. Eco-innovation in energy management innovations include the use of LED and solar cell for air conditioning. Eco-innovation in waste management includes methods of composting for organic waste management. The research results: (1) The savings that can be achieved with the implementation of eco innovation in the water management is Rp. 3,032,640 daily, or Rp.1,106,913,600 annually; (2) The savings derived from the implementation of eco innovation through replacement of central AC to AC LiBr Solar Powered will be saved Rp.1,933,992,990 annually and the use of LED lights in the Public street lighting PUSPIPTEK saved Rp.163,454,433 annually; (3) Application of eco innovation in waste management will be able to raise awareness of the environment by sorting organic, inorganic and plastic waste. Composting and plastic waste obtained from the sale revenue of Rp. 44,016,000 per year; (4) Overall, implementation of the eco-innovation system in PUSPIPTEK area can saves Rp. 3,248,377,023 per year, compared to the existing system; and (5)The savings are obtained with implementation of eco-innovation is considered as income. Analysis of the feasibility of the implementation of eco-innovation in water, energy, and waste management in PUSPIPTEK give NPV at a 15% discount factor in Rp. 3,895,228,761; 23.20% of IRR and 4.48 years of PBP. Thus the model of eco-innovation in the area PUSPIPTEK is feasible to implement.

Beneficial Roles of Azospirillum as Potential Bioinoculant for Eco-Friendly Agriculture (친환경농업을 위한 유용미생물 Azospirillum의 효율적 이용)

  • Gadagi, Ravi;Park, Myoung-Su;Lee, Hyoung-Seok;Seshadri, Sundaram;Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.290-303
    • /
    • 2003
  • Modern agriculture has been heavily dependent on chemical fertilizers to meet the food demands of ever increasing population. Progressive depletion of major plant nutrients in soil due to intensive cultivation practices has also necessitated the use of higher dose of chemical fertilizers particularly in soils where the organic matter content is very low. Indiscriminate use of chemical fertilizers and pressure on agriculturists to enhance per area crop yields has led to fast depletion of fossil fuel resources with concomitant increase in the prices of chemical fertilizers and also led to environmental pollution. Hence, the current trend throughout the world is to explore the possibility of using alternate nutrient sources or increasing the efficiency of chemical fertilizers by supplementing them with organic fertilizers and bioinoculants comprising largely microbes like, bacteria, fungi, algae etc to enhance nitrogen and phosphates in the soil thus creating a sustainable agricultural environment. Among the different microbial inoculants or biofertilizers, Azospirillum could be a potential candidate due to its non specific host root colonization. It had the capability to fix $N_2$ in wide pH regimes and even in presence of combined nitrogen. Azospirillum inoculation can increase the crop yield to 10-25% and substitute 25% of recommended doses of nitrogenous fertilizers. Apart from nitrogen fixation, Azospirillum is also involved in the root improvement, the activity which was attributed to an increase in the rate of water and mineral uptake by roots. The ability of Azospirillum to produce phytohormones was reported to enhance the root respiration rate, metabolism and root proliferation. They have also been reported to produce polyhydroxybutyrate, that can be used as a biodegradable thermosplastic. A lot of studies have addressed improvements in enhancing its efficiency to fix nitrogen fixation and hormone production.

Preparation of Heated Tobacco Biomass-derived Carbon Material for Supercapacitor Application (궐련형 담배 바이오매스 기반의 슈퍼커패시터용 탄소의 제조 및 응용)

  • Kim, Jiwon;Jekal, Suk;Kim, Dong Hyun;Yoon, Chang-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.2
    • /
    • pp.5-15
    • /
    • 2022
  • In this study, heated tobacco biomass was prepared as an active material for supercapacitor device. Retrieved tobacco leaf from the heated tobacco was carbonized at various temperature(800/850/950℃). Carbonized tobacco leaf material synthesized at 850℃ exhibited the highest C/O ratio, indicating the finest carbon quality. In addition, polypyrrole was coated onto the carbonized leaf material for increasing the electrochemical performance via low-temperature polymerization method. As-synthesized carbonized leaf material at 850℃(CTL-850)-based electrode and polypyrrole-coated carbonized leaf material(CTL-850/PPy)-based electrode displayed outstanding specific capacitances of 100.2 and 155.3F g-1 at 1 A g-1 with opertaing window of -1.0V and 1.0V. Asymmetric supercapacitor device, assembled with CTL-850 as the negative electrode and CTL-850/PPy as the positive electrode, manifested specific capacitance of 31.1F g-1(@1 A g-1) with widened operating voltage window of 2.0V. Moreover, as-prepared asymmetric supercapacitor device was able to lighten up the RED Led (1.8V), suggesting the high capacitance and extension of operating voltage window. The result of this research may help to pave the new possibility toward preparing the effective energy storage device material recycling the biomass.