Browse > Article

Beneficial Roles of Azospirillum as Potential Bioinoculant for Eco-Friendly Agriculture  

Gadagi, Ravi (Dept. Agricultural Chemistry, Chungbuk National University)
Park, Myoung-Su (Dept. Agricultural Chemistry, Chungbuk National University)
Lee, Hyoung-Seok (Dept. Agricultural Chemistry, Chungbuk National University)
Seshadri, Sundaram (Dept. Agricultural Chemistry, Chungbuk National University)
Chung, Jong-Bae (Dept. of Agricultural Chemistry, Daegu University)
Sa, Tong-Min (Dept. Agricultural Chemistry, Chungbuk National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.36, no.5, 2003 , pp. 290-303 More about this Journal
Abstract
Modern agriculture has been heavily dependent on chemical fertilizers to meet the food demands of ever increasing population. Progressive depletion of major plant nutrients in soil due to intensive cultivation practices has also necessitated the use of higher dose of chemical fertilizers particularly in soils where the organic matter content is very low. Indiscriminate use of chemical fertilizers and pressure on agriculturists to enhance per area crop yields has led to fast depletion of fossil fuel resources with concomitant increase in the prices of chemical fertilizers and also led to environmental pollution. Hence, the current trend throughout the world is to explore the possibility of using alternate nutrient sources or increasing the efficiency of chemical fertilizers by supplementing them with organic fertilizers and bioinoculants comprising largely microbes like, bacteria, fungi, algae etc to enhance nitrogen and phosphates in the soil thus creating a sustainable agricultural environment. Among the different microbial inoculants or biofertilizers, Azospirillum could be a potential candidate due to its non specific host root colonization. It had the capability to fix $N_2$ in wide pH regimes and even in presence of combined nitrogen. Azospirillum inoculation can increase the crop yield to 10-25% and substitute 25% of recommended doses of nitrogenous fertilizers. Apart from nitrogen fixation, Azospirillum is also involved in the root improvement, the activity which was attributed to an increase in the rate of water and mineral uptake by roots. The ability of Azospirillum to produce phytohormones was reported to enhance the root respiration rate, metabolism and root proliferation. They have also been reported to produce polyhydroxybutyrate, that can be used as a biodegradable thermosplastic. A lot of studies have addressed improvements in enhancing its efficiency to fix nitrogen fixation and hormone production.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abdel-Salam, M. S., andW. Klingmullar. 1987. Transpon Tn5 mutagenesis in Azospirillum lipoferum: Isolation of indole acetic acid mutants. Mol. Genet. Genomics 21: 165-170
2 Bar, T., andY. Okon. 1993. Tryptophan conversion to indole acetic acid via indole 3-acetamide in Azospirillum brasilense Sp-7. Can J. Microbiol. 39:81-86   DOI   ScienceOn
3 Barbieri, P., T. Zanella, E. Galli, and G. Zanetti. 1986. Wheat inoculation with Azospirillum brasilense and some mutants altered in nitrogen fixation and indole acetic acid production. FEMS Microbial. Lett. 36:87-90   DOI   ScienceOn
4 Bashan, Y., and G. Holguin. 1994. Root to root travel of the beneficial bacterium Azospirillum brasilense. Appl. Environ. Microb.60:2120-2131
5 Bashan, Y., and H. Levanony. 1990. Current status of Azospirillum inoculation technology as a challenge for agriculture. Can. J. Microbiol. 36:291-608
6 Day, J. M., and J. Dobeimer. 1976. Physiological aspects of nitrogen fixation by a Spirillum from Digitana roots. Soil Biol Biochem. 18:45-50
7 Dobereiner, J., and J. M. Day. 1976. First international symposium on nitrogen fixation. p. 518-538. In W. E. Newton and C. J. Nyman (ed.) Proceedings of international symposium on nitrogen fixation. Washington State University Press, Pullman, WA, USA
8 Dobereiner, J. 1977. Physiological aspects of nitrogen fixation in grasses association. p. 513-522. In W.E. Newton, J.R. Postgate, and C.Rofroguez-Barrueco. (ed.) Recent developments in nitrogen fixation Academic Press, Landon, UK
9 Fallik, E.,Y. Okon, E. Epstein, A.Goldman, and M. Fischer. 1989. Identification and qualification of IAA and IBA in Azospirillum brasilense inoculated maize roots. Soil Biol Biochem. 21:147-153   DOI   ScienceOn
10 Fulchieri, M., C. Lucangeli, andR.Bottini. 1993. Inoculation with A. lipoferum affects growth and gibherellin status of corn seedlings roots. Plant Cell Physiol. 134: 1305-1309
11 Gadagi, R. 1999. Studies on Azospirillum isolates of omamental plants and their effect on Gaillardia pulchella. Ph.D. thesis, Univeristy of Agricultural Sciences, Dharwad, India
12 Gaskins, M. H., and R. H. Hubbel. 1979. Response of nonleguminous plants to root inoculation with free-living diazoptrophic bacteria p. 175-182. In J. L. Harley, and R. S. Russel(ed.) The soil-root interface. Academic Press, Inc., New York, USA
13 Glick, B.R., C. L. Patten, G. Holguin, and D. M. Penrose. 1999. Biochemical and genetic mechanisms used by plant growth promoting bacteria Imperial College Press, London, UK
14 Horemans, S., K. De Koninck, J. Neuray, R. Hermans, and K. Kralssak. 1986. Production of plant growth substances by Azospirillum sp. andother rhizosphere bacteria. Symbiosis 2:341-346
15 Inbal, E., and M.Feldman. 1992. The response of a hormonal mutant comman wheat to bacteria of the genus Azospirillum. Isreal J. Bot. 31:257-263
16 Nayak, D. N., P. B. B. N. Charyulu, and V. R. Rao. 1981. $^1^5N$ incorporation and acetylene reduction by Azospirillum isolated from rice roots and soils. Plant Soil 41 :429-436
17 Okon, Y., S. L. Albrecht, and R. H. Burris, 1976a. Factors affecting growth and nitrogen fixation of Spirillum lipcferum. J. Bacteriol. 127: 1284-1254
18 Patriquin, D. G., and J. Dobereiner. 1978. Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Can. J. Microbiol. 24:734-747   DOI   ScienceOn
19 Rao, V. R., D. N. Nayak, and P. B. B. N. Charyulu. 1983. Yield responses of rice to root inoculated with Azospirillum. J. Agr. Sci. 100:689-691   DOI
20 Ram, J., R. P. Grover, R. B. Rewori, and S. Kumar. 1978. Improvement in the nitrogen fixing effectiveness of Rhizobium leguminoserum by incorporating genetic resistance to azide. Indian J. Expt. BioI. 16:1321-1322
21 Sarig, S.,A. Blum, and Y. Okon. 1988. lmprovement of the water and yield of filed grown sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J. Agr. Sci. 110:271-277   DOI
22 Scott, C. A., F. M. M. MagaJhaes, V. L. Divan, S. Dos, and D. B. Scott. 1978. Numbers of Azospirillum sp. associated with the roots offield grown maize. p.371-372. In J. Dobereiner(ed.) Limitations and potentials for biological nitrogen fixation in the tropics. Plenum Press, New York, USA
23 Sukiman, H. L, and P. B. New. 1990. Relationship between root colonization and initial adsorption of Azospirillum to plant roots. Microb. Ecol. 20:65-74   DOI   ScienceOn
24 Van Berkum, P., and B. B. Bohlool. 1980. Evaluation of nitrogen fixation by bacteria in association with roots of tropical grasses. Microbiol. Mol. BioI. R. 44:491-517
25 Vande Broek, A., and J. Vanderleyden. 1995. Genetics of Azospirillum-Plant root association - a review. Crit. Rev. Plant Sci. 14:445-46   DOI   ScienceOn
26 Wani, S. P. 1990. Inoculation with Associative nitrogen fixing bacteria: Role in cereal grain production improvement Indian J. Microbiol. 30:363-393
27 Watanabe. I., and C. Lin. 1984. Response of wetland rice to inoculation with Azospirillum lipoferum and Psuedomonas sp. Soil Sci. Plant Nutr. 30: 117-124   DOI
28 Baldani, V.L. D., M.A. Alvarez de, J. I. Baldani. and J. Dobereiner. 1983. Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots offield grown wheat and sorghum. Plant Soil 90:35-46
29 Bottini, R., M. Fulchieri, D. Pearce, and R. Pharis. 1989. Identification of gibberellins AI, A3, and iso-A3 in cultures of Azospirillum lipcferum: Plant Physiol 90:45-56   DOI   ScienceOn
30 Okon, Y., and Y. Kapulnik. 1986. Development and function of Azospirillum-inoculated roots. Plant Soil 90:3-16   DOI
31 Ferrier, M.C.B., M. S. Fernandes, and J. Dobereuber. 1987. Role of Azospirillum brasilense nitrate reductase in nitrate assimilation by wheat plants, Biol Fert Soil. 4:47-53
32 Stotzky, G. 1997. Soil as environment for life. p. 1-20. In.J. D. van Elsan, J. T. Trevors, and E. M. H. Wellington (ed.) Modern soil microbiology. Dekker, New York, USA
33 Alagawadi, A.R., and P. U. Krishnaraj. 1998. Field performance of twolocal rhizobacteria isolates insorghum. p.278. InProceedings of Conference of Association of Microbiologists of India, Mangalore, India
34 Boddy, R. M., and J. Dobeirner. 1988. Nitrogen fixation associated with grasses and cereals. Recent progress and prospective for the future. Fert. Res. 42:241-250
35 Lucangeli, C, and R. Bottini. 1997. Effects of Azospirillum spp. on endogenous gibberellins content and growth of maize (Zea mays L.) treated with uniconazole. Symbiosis 23:63-72
36 Seshadri, S., R. Muthukumarasamy, C. Lakshminarasimhan, and S. Ignacimuthu. 2000. Solubilization of inorganic phosphates by Azospirillum halopraeferans, Curr. Sci. 79:566-567
37 Dobereiner, J., I. E. Marriel, and M. Nery. 1976. Ecological distribution of Spirillum lipoferum Beijerinck. Can. J. Microbiol 22: 1464-1473   DOI   ScienceOn
38 Eckert., O. B. Weber, G. Kirchhof, A. Halbritter, M. Stoffels, and A. Hartmann. 2001. Azospirillum doebereinerae sp. nov., a nitrogenfixing bacterium associated with theC(4)-grass Miscanthus, Int. J. Syst Evol. Microbiol, 51:17-26   DOI
39 Bashan, Y., H. Levanony, and O. Ziv-Vecht. 1987. The fate of field inoculated Azospirillum brasilense cd in wheat Ihizosphere during the growing season Can. J. Microbiol. 35:691-697   DOI
40 Murthy, M. G., and J. K. Ladha. 1988. Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hydroponic conditions. Plant Soil 108: 115-118
41 Umali-Garcia, M., D. H. Hubbell, M. H. Gaskins, and F. B. Gazzo. 1981. Association of Azospirillum with grass roots. Appl. Environ. Microb. 29:219-226
42 Kapulnik, Y., Y. Okon, and Y. Henis. 1985. Changes in root morphology of wheat caused by Azospirillum inoculation. Can. J. Microbiol. 31:881-887   DOI
43 Kumar, S., S. Parada, and K. R. Dadrwal. 1995. Root growth stimulating Azospirilla population andrice plant growth of two modes ofstraw application to a wet land rice field BioI. Fert. Soil. 5:106-111
44 Okon, Y., and C. Labandera-Gonzalez. 1994. Agronomic applications of Azospirillum: an evaluation of 20 years of worldwide field inoculation. Soil Bioi Biochem 26:1591-1601   DOI   ScienceOn
45 Han, S. O., and P.B. New. 1998. Variation in nitrogen fixing ability among natural isolates of Azospirillum. Microbial Ecol. 36:193-201   DOI   ScienceOn
46 Bashan, Y., and H. Levanony. 1987. Horizontal and vertical movement ofAzospirillum brasilense Cdin thesoil andalong the rhizosphere of wheat and weeds in controlled and field environments. J.Gen. Appl. Microbiol. 133:3473-3480
47 Charylulu, P.B.B. N.,and V.P. Rao.1980. lnfluence of various soil factors on nitrogen fixation by Azospirillum spp. Soil BioI. Biochem. 12:343-346   DOI   ScienceOn
48 Christiansen-Waniger, C, and J. A. Van-Veen 1991. $NH_4+$ excreting Azospirillum brasilense mutants enhance thenitrogen supply of a wheat root Appl. Environ. Microb. 57:3005-3012
49 Patriquin, D. G., J. Dobereiner, and D. K. Jain. 1983. Sites and processed of association between diazotrophs and grasses. Can. J. Microbiol. 29:900-915   DOI
50 Tamilvendan, K., and D. Purushothaman. 1996. Developing phosphorus solubilizing strains in Azospirillum. p. 79-89. In Proceeding of thenational seminar on microorganisms. Madurai, India
51 Kataputiya, S., P. B. New, C. Elmerich, and I. R. Kennedy. 1995. Improved $N_2$ fixation in 2,4-D treated wheat roots associated with Azospirillum lipoferum: Studies of colonization using reporter genes. Soil BioI. Biochem 27:447-452   DOI   ScienceOn
52 Laxmikumari, M., S. K. Kavimandan, and N. S. Subba Rao. 1976. Occurrence of nitrogen fixing Spirillum in roots of rice, sorghum maize and other plants. Indian J. Exp. BioI. 9:638-639
53 Crozier, A., P. Arruda, J. M., Jasmin, A. M. Monterio, and G. Sandberg. 1988. Analysis of indoles in culture medium from Azospirillum lipoferum and Azospirillum brasilense. Appl. Environ. Microb. 54:2833-2837
54 Govindan, M., and D. Purushothaman. 1985. Association of nitrogen fixing bacteria with certain plantation crops. National Academy Sci. Lett. (India) 8:163-165
55 Prinsen, E., A. Costaeurta, K. Michiels, J. Vanderleyden, and H. Van-Onckelen. 1993. Azospirillum brasilense indole-3-acetic acid biosynthesis: Evidence for a non-tryptophan dependent pathway. Mol. Plant Microbe. In. 6:609-615   DOI
56 Schank, S. C., R. H. Smith, G. C. Weiser, D. A. Zueser, J. H. Bontain, H. Quensenbenyk, M. E. Tyler, J. L. Milam, and R. C. Hittell. 1979. Fluorescent antibody technique to identify Azospirillum brasilense amino acids with roots of grasses. Soil BioI. Biochem. 11:287-295   DOI   ScienceOn
57 Kolb, W. and Martin, P. 1985. Response of plant roots to inoculation with Azospirillum brasilense and to application of indole acetic acid. p. 215-221. In W. Klingmuller (ed.) Azospirillum III, Genetics Physiology, Ecology. Speinger-Verlag, Berlin, Germany
58 Bashan, Y., and G. Holguin. 1997. Azospirillum-plant relationship environmental and physiological advances (1990-1996). Can. J. Microbiol. 43: 103-121   DOI   ScienceOn
59 Bashan, Y., Y. Ream, H. L.Levanony, andA. Sade. 1989. Non specific response inplant growth yield and root colonization of non cereal crop plants to inoculation with Azospirillum brasilense cd. Can. J. Bot. 67:1317-1324   DOI
60 Bashan, Y., M. E. Puente, M. N. Rodriguez-Mendoza, G. Toledo, G. Holguin, R. Ferrara-Cerrato, and S. Pedrin. 1995. Survival of Azospirillum brasilense in the bulksoil and rhizosphere of 23 soil types. ApplEnviron Microb. 61:1938:1945
61 Neuer, G., A. Kronemberg, and H. Bothe. 1985. Denitrification and nitrogen fixation by Azospirillum. III. Properties of Wheat Azospirillum associations. Arch. Microbiol. 141:364-370   DOI
62 Subba Rao, N. S. 1981. Response of Crops to Azospirillum inoculation inIndia. p. 137-144. In P. B. Voswe, and A. P. Ruschel (ed.) Associative nitrogen fixation, Vol. I. CRC Press, Baca Raton, Florida, USA
63 Sly, L. I., and E. Staekebrandt. 1999. Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum. Int. J. Syst. Bacteriol. 49:541-544   DOI   ScienceOn
64 Didonet, A. D.,and A. C. Magalhaes. 1993. Therole of auxin like compounds in plant growth promoting rhizobacteria: the wheat Azospirillum association. Rev. Brasileira Fisiologia Vegetal 5:179-183
65 Jain, D. K., and D. G. Patriquin. 1984. Root hair deformations bacterial attachment and plant growth in wheat Azospirillum association. Appl. Environ. Microb. 48:1208-1213
66 Okon, Y. 1985. Azospirillum as a potential inocualnt for agriculture. Trends Biotechnol. 3:223-228   DOI   ScienceOn
67 Tien. T. M., M. H. Gaskin, and D. H. Hubbell. 1979. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet(Penniestum americanum). Appl. Environ. Microb. 37: 1016-1024
68 Balsubramaniam, A., and K.Kumar. 1989. Influence of Azospirillum biofertilizer on rice crop. International workshop and symposium on biological nitrogen fixation associated with rice production, CRRI. Cuttack, India
69 Bashan, Y., and H. Levanony. 1988. Adsorption of the rhizosphere bacterium Azospirillum brasilense Cd to soil, sand and peat particles. J. Gen. Appl Microbiol. l34:1811-1820
70 Baldani, J. I., L. Curuso, V. L. R. Baldani, and J. Dobeimer. 1997. Recent Advances in BNF with non-legume plants. Soil BioI. Biochem. 29:911-922   DOI   ScienceOn
71 Day, J. M., M. C. Neves, and J. Dobereiner. 1975. Nitrogenase activity on the roots of tropical grasses. Soil BioI. Biochem. 7:107112   DOI   ScienceOn
72 Bothe, H., B. Klein, M. Stephan, and J. Dobereiner. 1981. Transformation of inorganic nitrogen by Azospirillum spp. Arc. Microbiol. 130:96-100   DOI
73 Alexandre, G., C. Jacoud, D.Faure, and R. Bally. 1996. Population dynamics ofa motile andnon-motile Azospirillum lipoferum strain during rice root colonization and motility variation in the rhizosphere. FEMS Microbiol. Ecol. 19:271-278   DOI   ScienceOn
74 Bashan, Y. 1999. Interactions of Azospirillum spp. in soils - A review. Bio. Fert Soil. 29:246-256   DOI   ScienceOn
75 Machado, H. B., S. Funayarna, L. V. Rigo, and F. O. Redrosa 1990. Excretion of ammonium by Azospirillum brasilense mutants resistant to ethylenediamine. Can J. Microbiol. 57:549-553
76 Morgenstern, E., and Y. Okon. 1987. The effect of Azospirillum brasilense and auxin on root morphology in seedling of Sorghum bicolor and Sorghum Sudanese. Adir Soil Res. Rehab. 1:115-127   DOI
77 Bartin, L. L., G.V.Johnson, and M. S. Orbork. 1986. The effect of Azospirillum brasilense pm ion absorption and translocation by sorghum. J. Plant Nutr. 9:557-565   DOI
78 Subba Rao, N. S. 1986. Cereal nitrogen fixation research under the BNF coordinated project of ICAR. p. 23-30. In S. P. Wani (ed.) Cereal nitrogen fixation. International Crop Research Institute for Semiarid Tropics, Patancheru, India
79 Subba Rao, N. S. 1993. Interaction of nodulated tree species with other microorganisms and plants. p. 54-84. In N. S. Subba Rao, and C. Rodriguez-Barruecco (ed.) Symbiosis in nitrogen fixing tree. Oxford and IBH Publishing Co., New Delhi, India
80 Baldani, V.L. D., J. I. Baldani, and J. Dobereiner. 1983. Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can. J. Microbiol. 29:924-929   DOI
81 Lin, W., Y. Okon, and R. W. F. Hardy. 1983. Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense. Appl. Environ. Microb. 45: 1775-1779
82 Muthukumarasamy, R., G. Revathi, S. Seshadri, and C. Lakshminarasimhan. 2002. Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus). a promising diazotrophic endophyte intropics. Areview. Curr. Sci. 83: 137-145
83 Tilak, K. V. B. R., C. S. Singh, and J. P. S. Rana 1981. Effects of combined inoculation of Azospirillum brasilense with Rhizobium trifoli, Rhizobium meliloti and Rhizobium sp. (cowpea miscellany) on nodulation and yield of clover (Trifolium repense), Lucerne (Medicago sativa) and chick pea (Cicer arietinum). Zbl. Bakt. II, Abt. 136:117-120
84 Didonet, A. D., and A. C. Magalhaes. 1997. Growth and nitrite production by Azospirillum strains subjected to different levels of dissolved oxygen in the medium. Soil Biol Biochem. 29:1743-1746   DOI   ScienceOn
85 Okon, Y., S. L. Albrecht, and R. H. Burris. I976b. Carbon and ammonia metabolism of Spirillum lipoferum. J. Bacteriol. 128:592-597
86 Santhanakrishnan, P., and G. Obliisami. 1988. Effect of the bacterial inoculants and growth regulator on the growth of mulberry cuttings. p. 93-95. In Processing on Biofertilizers, Tamil Nadu Agricultural University. Coimbatore, India
87 Wong, P. P., and M. E. Sternberg. 1979. Characterization of a bacterium of the genus Azospirillum from cellulolytic nitrogen fixing mixed cultures. Can. J. Microbiol. 26:291-296
88 Hartmann, A, M. Singh, and W. Klingermuller. 1983. Isolation and characterization of Azospirillum mutants excreting high amounts of indole acetic acid. Can. J. Microbiol. 29:916-920   DOI
89 Reynders, L., and K. Vlassak. 1979. Conversion of tryptophan to indole acetic acid by Azospirillum sp. Soil Bioi. Biochem. 11:217-227   DOI   ScienceOn
90 Kloepper, J. W. 1994. Plant growth- promoting rhizobacteria (Other systems). p. 137-166. In Y. Okon (ed.) Azmpirillum/plant associations. CRC Press, Boca Raton, Florida, USA
91 Wani, S. P., S.Chandrapalaiah, M. A. Zambre, and K. K. Lee. 1988. Association between Ni-fixing bacteria and pearl millet plants: Response, mechanism and resistance. Plant Soil 110:289-302   DOI
92 Jain, D. K., and D. G. Patriquin. 1985. Characterization of a substance produced by Azospirillum, which causes branching of wheat root hairs. Can. J. Microbiol. 31:206-210   DOI
93 Vandehhove, H., R. Mercia, M. Van Steenbergen, and K. Vlassak. 1993. Microcalorimetric characterization, physiological stages and survival ability of Azospirillum brasilense. Soil BioI. Biochem. 25:513-519   DOI   ScienceOn
94 Van-Dommelen, A., E. van Bostelaere, V. Keijers, and J. Verderleyden. 1997. Genetics of Azospirillum brasilense with respect to ammonium transport, sugar uptake and chemotaxis. Plant Soil 4:156-160.