Beneficial Roles of Azospirillum as Potential Bioinoculant for Eco-Friendly Agriculture

친환경농업을 위한 유용미생물 Azospirillum의 효율적 이용

  • Gadagi, Ravi (Dept. Agricultural Chemistry, Chungbuk National University) ;
  • Park, Myoung-Su (Dept. Agricultural Chemistry, Chungbuk National University) ;
  • Lee, Hyoung-Seok (Dept. Agricultural Chemistry, Chungbuk National University) ;
  • Seshadri, Sundaram (Dept. Agricultural Chemistry, Chungbuk National University) ;
  • Chung, Jong-Bae (Dept. of Agricultural Chemistry, Daegu University) ;
  • Sa, Tong-Min (Dept. Agricultural Chemistry, Chungbuk National University)
  • ;
  • 박명수 (충북대학교 농화학과) ;
  • 이형석 (충북대학교 농화학과) ;
  • ;
  • 정종배 (대구대학교 생명환경학부 농화학전공) ;
  • 사동민 (충북대학교 농화학과)
  • Received : 2003.09.25
  • Accepted : 2003.10.10
  • Published : 2003.10.30

Abstract

Modern agriculture has been heavily dependent on chemical fertilizers to meet the food demands of ever increasing population. Progressive depletion of major plant nutrients in soil due to intensive cultivation practices has also necessitated the use of higher dose of chemical fertilizers particularly in soils where the organic matter content is very low. Indiscriminate use of chemical fertilizers and pressure on agriculturists to enhance per area crop yields has led to fast depletion of fossil fuel resources with concomitant increase in the prices of chemical fertilizers and also led to environmental pollution. Hence, the current trend throughout the world is to explore the possibility of using alternate nutrient sources or increasing the efficiency of chemical fertilizers by supplementing them with organic fertilizers and bioinoculants comprising largely microbes like, bacteria, fungi, algae etc to enhance nitrogen and phosphates in the soil thus creating a sustainable agricultural environment. Among the different microbial inoculants or biofertilizers, Azospirillum could be a potential candidate due to its non specific host root colonization. It had the capability to fix $N_2$ in wide pH regimes and even in presence of combined nitrogen. Azospirillum inoculation can increase the crop yield to 10-25% and substitute 25% of recommended doses of nitrogenous fertilizers. Apart from nitrogen fixation, Azospirillum is also involved in the root improvement, the activity which was attributed to an increase in the rate of water and mineral uptake by roots. The ability of Azospirillum to produce phytohormones was reported to enhance the root respiration rate, metabolism and root proliferation. They have also been reported to produce polyhydroxybutyrate, that can be used as a biodegradable thermosplastic. A lot of studies have addressed improvements in enhancing its efficiency to fix nitrogen fixation and hormone production.

현대 농업은 과도한 인구 증가에 따른 필요한 식량을 충족하기 위해 화학비료에 많이 의존하고 있다. 이는 농작물의 집약적인 경작으로 인해 토양의 중요 식물영양소가 점차 고갈되고 유기물 함량이 낮아진 토양에서 양분을 공급하기 위해 화학비료를 많이 사용하기 때문이다. 그러나 화학비료의 무분별한 사용은 화학비료의 가격상승과 더불어 화석연료의 소모를 늘리며, 심각한 환경오염을 일으키게 되었다. 따라서, 현재 세계가 주목하고 있는 새로운 방안은 농업 환경을 유지시키는 토양에 인산과 질소를 높이는 bacteria, fungi, algae와 같은 미생물의 접종과 함께 유기물 비료를 시비함으로서 화학 비료의 효능을 증가시키거나 화학비료의 대체 영양분으로 이용하는 것이다. 이러한 미생물비료 중 Azospirillum은 식물뿌리에 군집화 함에 있어 기주 식물에 특이성이 없으며, 넓은 범위의 pH 환경과 질소화합물이 존재하는 환경에서도 질소고정이 가능하다. Azospirillum 균 접종은 10-25%의 수확량 증가를 나타냈으며 질소비료시비를 25% 절감시키는 효과를 나타내었다. 질소고정 외에 Azospirillum은 뿌리의 생육을 증가시켜 무기양분과 수분의 흡수를 증가시킨다. 또한, Azospirillum은 식물 생장 호르몬을 생성하여 뿌리호흡 및 물질대사와 뿌리의 생장 및 활력을 높이고 polyhydroxybutyrate를 생성 이용하여 thermosplastic을 분해할 수 있다고 보고되고 있으며, 이러한 Azospirillum의 호르몬 생성 및 질소 고정 효능을 증대 향상시키기위해 많이 연구되고 있다. 그러므로 본 연구에서는 친환경농업을 위한 유용미생물로써 Azospirillum의 효율적 가치를 평가하였다.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation

References

  1. Abdel-Salam, M. S., andW. Klingmullar. 1987. Transpon Tn5 mutagenesis in Azospirillum lipoferum: Isolation of indole acetic acid mutants. Mol. Genet. Genomics 21: 165-170
  2. Alagawadi, A.R., and P. U. Krishnaraj. 1998. Field performance of twolocal rhizobacteria isolates insorghum. p.278. InProceedings of Conference of Association of Microbiologists of India, Mangalore, India
  3. Alexandre, G., C. Jacoud, D.Faure, and R. Bally. 1996. Population dynamics ofa motile andnon-motile Azospirillum lipoferum strain during rice root colonization and motility variation in the rhizosphere. FEMS Microbiol. Ecol. 19:271-278 https://doi.org/10.1111/j.1574-6941.1996.tb00219.x
  4. Baldani, V.L. D., J. I. Baldani, and J. Dobereiner. 1983. Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can. J. Microbiol. 29:924-929 https://doi.org/10.1139/m83-148
  5. Baldani, V.L. D., M.A. Alvarez de, J. I. Baldani. and J. Dobereiner. 1983. Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots offield grown wheat and sorghum. Plant Soil 90:35-46
  6. Baldani, J. I., L. Curuso, V. L. R. Baldani, and J. Dobeimer. 1997. Recent Advances in BNF with non-legume plants. Soil BioI. Biochem. 29:911-922 https://doi.org/10.1016/S0038-0717(96)00218-0
  7. Balsubramaniam, A., and K.Kumar. 1989. Influence of Azospirillum biofertilizer on rice crop. International workshop and symposium on biological nitrogen fixation associated with rice production, CRRI. Cuttack, India
  8. Bar, T., andY. Okon. 1993. Tryptophan conversion to indole acetic acid via indole 3-acetamide in Azospirillum brasilense Sp-7. Can J. Microbiol. 39:81-86 https://doi.org/10.1139/m93-011
  9. Barbieri, P., T. Zanella, E. Galli, and G. Zanetti. 1986. Wheat inoculation with Azospirillum brasilense and some mutants altered in nitrogen fixation and indole acetic acid production. FEMS Microbial. Lett. 36:87-90 https://doi.org/10.1111/j.1574-6968.1986.tb01672.x
  10. Bartin, L. L., G.V.Johnson, and M. S. Orbork. 1986. The effect of Azospirillum brasilense pm ion absorption and translocation by sorghum. J. Plant Nutr. 9:557-565 https://doi.org/10.1080/01904168609363466
  11. Bashan, Y. 1999. Interactions of Azospirillum spp. in soils - A review. Bio. Fert Soil. 29:246-256 https://doi.org/10.1007/s003740050549
  12. Bashan, Y., and G. Holguin. 1994. Root to root travel of the beneficial bacterium Azospirillum brasilense. Appl. Environ. Microb.60:2120-2131
  13. Bashan, Y., and G. Holguin. 1997. Azospirillum-plant relationship environmental and physiological advances (1990-1996). Can. J. Microbiol. 43: 103-121 https://doi.org/10.1139/m97-015
  14. Bashan, Y., and H. Levanony. 1987. Horizontal and vertical movement ofAzospirillum brasilense Cdin thesoil andalong the rhizosphere of wheat and weeds in controlled and field environments. J.Gen. Appl. Microbiol. 133:3473-3480
  15. Bashan, Y., and H. Levanony. 1988. Adsorption of the rhizosphere bacterium Azospirillum brasilense Cd to soil, sand and peat particles. J. Gen. Appl Microbiol. l34:1811-1820
  16. Bashan, Y., and H. Levanony. 1990. Current status of Azospirillum inoculation technology as a challenge for agriculture. Can. J. Microbiol. 36:291-608
  17. Bashan, Y., H. Levanony, and O. Ziv-Vecht. 1987. The fate of field inoculated Azospirillum brasilense cd in wheat Ihizosphere during the growing season Can. J. Microbiol. 35:691-697 https://doi.org/10.1139/m89-113
  18. Bashan, Y., Y. Ream, H. L.Levanony, andA. Sade. 1989. Non specific response inplant growth yield and root colonization of non cereal crop plants to inoculation with Azospirillum brasilense cd. Can. J. Bot. 67:1317-1324 https://doi.org/10.1139/b89-175
  19. Bashan, Y., M. E. Puente, M. N. Rodriguez-Mendoza, G. Toledo, G. Holguin, R. Ferrara-Cerrato, and S. Pedrin. 1995. Survival of Azospirillum brasilense in the bulksoil and rhizosphere of 23 soil types. ApplEnviron Microb. 61:1938:1945
  20. Boddy, R. M., and J. Dobeirner. 1988. Nitrogen fixation associated with grasses and cereals. Recent progress and prospective for the future. Fert. Res. 42:241-250
  21. Bothe, H., B. Klein, M. Stephan, and J. Dobereiner. 1981. Transformation of inorganic nitrogen by Azospirillum spp. Arc. Microbiol. 130:96-100 https://doi.org/10.1007/BF00411058
  22. Bottini, R., M. Fulchieri, D. Pearce, and R. Pharis. 1989. Identification of gibberellins AI, A3, and iso-A3 in cultures of Azospirillum lipcferum: Plant Physiol 90:45-56 https://doi.org/10.1104/pp.90.1.45
  23. Charylulu, P.B.B. N.,and V.P. Rao.1980. lnfluence of various soil factors on nitrogen fixation by Azospirillum spp. Soil BioI. Biochem. 12:343-346 https://doi.org/10.1016/0038-0717(80)90007-3
  24. Christiansen-Waniger, C, and J. A. Van-Veen 1991. $NH_4+$ excreting Azospirillum brasilense mutants enhance thenitrogen supply of a wheat root Appl. Environ. Microb. 57:3005-3012
  25. Crozier, A., P. Arruda, J. M., Jasmin, A. M. Monterio, and G. Sandberg. 1988. Analysis of indoles in culture medium from Azospirillum lipoferum and Azospirillum brasilense. Appl. Environ. Microb. 54:2833-2837
  26. Day, J. M., M. C. Neves, and J. Dobereiner. 1975. Nitrogenase activity on the roots of tropical grasses. Soil BioI. Biochem. 7:107112 https://doi.org/10.1016/0038-0717(75)90007-3
  27. Day, J. M., and J. Dobeimer. 1976. Physiological aspects of nitrogen fixation by a Spirillum from Digitana roots. Soil Biol Biochem. 18:45-50
  28. Didonet, A. D.,and A. C. Magalhaes. 1993. Therole of auxin like compounds in plant growth promoting rhizobacteria: the wheat Azospirillum association. Rev. Brasileira Fisiologia Vegetal 5:179-183
  29. Didonet, A. D., and A. C. Magalhaes. 1997. Growth and nitrite production by Azospirillum strains subjected to different levels of dissolved oxygen in the medium. Soil Biol Biochem. 29:1743-1746 https://doi.org/10.1016/S0038-0717(97)00066-7
  30. Dobereiner, J., and J. M. Day. 1976. First international symposium on nitrogen fixation. p. 518-538. In W. E. Newton and C. J. Nyman (ed.) Proceedings of international symposium on nitrogen fixation. Washington State University Press, Pullman, WA, USA
  31. Dobereiner, J., I. E. Marriel, and M. Nery. 1976. Ecological distribution of Spirillum lipoferum Beijerinck. Can. J. Microbiol 22: 1464-1473 https://doi.org/10.1139/m76-217
  32. Dobereiner, J. 1977. Physiological aspects of nitrogen fixation in grasses association. p. 513-522. In W.E. Newton, J.R. Postgate, and C.Rofroguez-Barrueco. (ed.) Recent developments in nitrogen fixation Academic Press, Landon, UK
  33. Eckert., O. B. Weber, G. Kirchhof, A. Halbritter, M. Stoffels, and A. Hartmann. 2001. Azospirillum doebereinerae sp. nov., a nitrogenfixing bacterium associated with theC(4)-grass Miscanthus, Int. J. Syst Evol. Microbiol, 51:17-26 https://doi.org/10.1099/00207713-51-1-17
  34. Fallik, E.,Y. Okon, E. Epstein, A.Goldman, and M. Fischer. 1989. Identification and qualification of IAA and IBA in Azospirillum brasilense inoculated maize roots. Soil Biol Biochem. 21:147-153 https://doi.org/10.1016/0038-0717(89)90024-2
  35. Ferrier, M.C.B., M. S. Fernandes, and J. Dobereuber. 1987. Role of Azospirillum brasilense nitrate reductase in nitrate assimilation by wheat plants, Biol Fert Soil. 4:47-53
  36. Fulchieri, M., C. Lucangeli, andR.Bottini. 1993. Inoculation with A. lipoferum affects growth and gibherellin status of corn seedlings roots. Plant Cell Physiol. 134: 1305-1309
  37. Gadagi, R. 1999. Studies on Azospirillum isolates of omamental plants and their effect on Gaillardia pulchella. Ph.D. thesis, Univeristy of Agricultural Sciences, Dharwad, India
  38. Gaskins, M. H., and R. H. Hubbel. 1979. Response of nonleguminous plants to root inoculation with free-living diazoptrophic bacteria p. 175-182. In J. L. Harley, and R. S. Russel(ed.) The soil-root interface. Academic Press, Inc., New York, USA
  39. Glick, B.R., C. L. Patten, G. Holguin, and D. M. Penrose. 1999. Biochemical and genetic mechanisms used by plant growth promoting bacteria Imperial College Press, London, UK
  40. Govindan, M., and D. Purushothaman. 1985. Association of nitrogen fixing bacteria with certain plantation crops. National Academy Sci. Lett. (India) 8:163-165
  41. Han, S. O., and P.B. New. 1998. Variation in nitrogen fixing ability among natural isolates of Azospirillum. Microbial Ecol. 36:193-201 https://doi.org/10.1007/s002489900106
  42. Hartmann, A, M. Singh, and W. Klingermuller. 1983. Isolation and characterization of Azospirillum mutants excreting high amounts of indole acetic acid. Can. J. Microbiol. 29:916-920 https://doi.org/10.1139/m83-147
  43. Horemans, S., K. De Koninck, J. Neuray, R. Hermans, and K. Kralssak. 1986. Production of plant growth substances by Azospirillum sp. andother rhizosphere bacteria. Symbiosis 2:341-346
  44. Inbal, E., and M.Feldman. 1992. The response of a hormonal mutant comman wheat to bacteria of the genus Azospirillum. Isreal J. Bot. 31:257-263
  45. Jain, D. K., and D. G. Patriquin. 1984. Root hair deformations bacterial attachment and plant growth in wheat Azospirillum association. Appl. Environ. Microb. 48:1208-1213
  46. Jain, D. K., and D. G. Patriquin. 1985. Characterization of a substance produced by Azospirillum, which causes branching of wheat root hairs. Can. J. Microbiol. 31:206-210 https://doi.org/10.1139/m85-039
  47. Kapulnik, Y., Y. Okon, and Y. Henis. 1985. Changes in root morphology of wheat caused by Azospirillum inoculation. Can. J. Microbiol. 31:881-887 https://doi.org/10.1139/m85-165
  48. Kataputiya, S., P. B. New, C. Elmerich, and I. R. Kennedy. 1995. Improved $N_2$ fixation in 2,4-D treated wheat roots associated with Azospirillum lipoferum: Studies of colonization using reporter genes. Soil BioI. Biochem 27:447-452 https://doi.org/10.1016/0038-0717(95)98617-W
  49. Kloepper, J. W. 1994. Plant growth- promoting rhizobacteria (Other systems). p. 137-166. In Y. Okon (ed.) Azmpirillum/plant associations. CRC Press, Boca Raton, Florida, USA
  50. Kolb, W. and Martin, P. 1985. Response of plant roots to inoculation with Azospirillum brasilense and to application of indole acetic acid. p. 215-221. In W. Klingmuller (ed.) Azospirillum III, Genetics Physiology, Ecology. Speinger-Verlag, Berlin, Germany
  51. Kumar, S., S. Parada, and K. R. Dadrwal. 1995. Root growth stimulating Azospirilla population andrice plant growth of two modes ofstraw application to a wet land rice field BioI. Fert. Soil. 5:106-111
  52. Laxmikumari, M., S. K. Kavimandan, and N. S. Subba Rao. 1976. Occurrence of nitrogen fixing Spirillum in roots of rice, sorghum maize and other plants. Indian J. Exp. BioI. 9:638-639
  53. Lin, W., Y. Okon, and R. W. F. Hardy. 1983. Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense. Appl. Environ. Microb. 45: 1775-1779
  54. Lucangeli, C, and R. Bottini. 1997. Effects of Azospirillum spp. on endogenous gibberellins content and growth of maize (Zea mays L.) treated with uniconazole. Symbiosis 23:63-72
  55. Machado, H. B., S. Funayarna, L. V. Rigo, and F. O. Redrosa 1990. Excretion of ammonium by Azospirillum brasilense mutants resistant to ethylenediamine. Can J. Microbiol. 57:549-553
  56. Morgenstern, E., and Y. Okon. 1987. The effect of Azospirillum brasilense and auxin on root morphology in seedling of Sorghum bicolor and Sorghum Sudanese. Adir Soil Res. Rehab. 1:115-127 https://doi.org/10.1080/15324988709381135
  57. Murthy, M. G., and J. K. Ladha. 1988. Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hydroponic conditions. Plant Soil 108: 115-118
  58. Muthukumarasamy, R., G. Revathi, S. Seshadri, and C. Lakshminarasimhan. 2002. Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus). a promising diazotrophic endophyte intropics. Areview. Curr. Sci. 83: 137-145
  59. Nayak, D. N., P. B. B. N. Charyulu, and V. R. Rao. 1981. $^1^5N$ incorporation and acetylene reduction by Azospirillum isolated from rice roots and soils. Plant Soil 41 :429-436
  60. Neuer, G., A. Kronemberg, and H. Bothe. 1985. Denitrification and nitrogen fixation by Azospirillum. III. Properties of Wheat Azospirillum associations. Arch. Microbiol. 141:364-370 https://doi.org/10.1007/BF00428851
  61. Okon, Y. 1985. Azospirillum as a potential inocualnt for agriculture. Trends Biotechnol. 3:223-228 https://doi.org/10.1016/0167-7799(85)90012-5
  62. Okon, Y., and Y. Kapulnik. 1986. Development and function of Azospirillum-inoculated roots. Plant Soil 90:3-16 https://doi.org/10.1007/BF02277383
  63. Okon, Y., and C. Labandera-Gonzalez. 1994. Agronomic applications of Azospirillum: an evaluation of 20 years of worldwide field inoculation. Soil Bioi Biochem 26:1591-1601 https://doi.org/10.1016/0038-0717(94)90311-5
  64. Okon, Y., S. L. Albrecht, and R. H. Burris, 1976a. Factors affecting growth and nitrogen fixation of Spirillum lipcferum. J. Bacteriol. 127: 1284-1254
  65. Okon, Y., S. L. Albrecht, and R. H. Burris. I976b. Carbon and ammonia metabolism of Spirillum lipoferum. J. Bacteriol. 128:592-597
  66. Patriquin, D. G., and J. Dobereiner. 1978. Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Can. J. Microbiol. 24:734-747 https://doi.org/10.1139/m78-122
  67. Patriquin, D. G., J. Dobereiner, and D. K. Jain. 1983. Sites and processed of association between diazotrophs and grasses. Can. J. Microbiol. 29:900-915 https://doi.org/10.1139/m83-146
  68. Prinsen, E., A. Costaeurta, K. Michiels, J. Vanderleyden, and H. Van-Onckelen. 1993. Azospirillum brasilense indole-3-acetic acid biosynthesis: Evidence for a non-tryptophan dependent pathway. Mol. Plant Microbe. In. 6:609-615 https://doi.org/10.1094/MPMI-6-609
  69. Rao, V. R., D. N. Nayak, and P. B. B. N. Charyulu. 1983. Yield responses of rice to root inoculated with Azospirillum. J. Agr. Sci. 100:689-691 https://doi.org/10.1017/S0021859600035462
  70. Ram, J., R. P. Grover, R. B. Rewori, and S. Kumar. 1978. Improvement in the nitrogen fixing effectiveness of Rhizobium leguminoserum by incorporating genetic resistance to azide. Indian J. Expt. BioI. 16:1321-1322
  71. Reynders, L., and K. Vlassak. 1979. Conversion of tryptophan to indole acetic acid by Azospirillum sp. Soil Bioi. Biochem. 11:217-227 https://doi.org/10.1016/0038-0717(79)90064-6
  72. Santhanakrishnan, P., and G. Obliisami. 1988. Effect of the bacterial inoculants and growth regulator on the growth of mulberry cuttings. p. 93-95. In Processing on Biofertilizers, Tamil Nadu Agricultural University. Coimbatore, India
  73. Sarig, S.,A. Blum, and Y. Okon. 1988. lmprovement of the water and yield of filed grown sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J. Agr. Sci. 110:271-277 https://doi.org/10.1017/S0021859600081296
  74. Schank, S. C., R. H. Smith, G. C. Weiser, D. A. Zueser, J. H. Bontain, H. Quensenbenyk, M. E. Tyler, J. L. Milam, and R. C. Hittell. 1979. Fluorescent antibody technique to identify Azospirillum brasilense amino acids with roots of grasses. Soil BioI. Biochem. 11:287-295 https://doi.org/10.1016/0038-0717(79)90074-9
  75. Scott, C. A., F. M. M. MagaJhaes, V. L. Divan, S. Dos, and D. B. Scott. 1978. Numbers of Azospirillum sp. associated with the roots offield grown maize. p.371-372. In J. Dobereiner(ed.) Limitations and potentials for biological nitrogen fixation in the tropics. Plenum Press, New York, USA
  76. Seshadri, S., R. Muthukumarasamy, C. Lakshminarasimhan, and S. Ignacimuthu. 2000. Solubilization of inorganic phosphates by Azospirillum halopraeferans, Curr. Sci. 79:566-567
  77. Sly, L. I., and E. Staekebrandt. 1999. Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum. Int. J. Syst. Bacteriol. 49:541-544 https://doi.org/10.1099/00207713-49-2-541
  78. Stotzky, G. 1997. Soil as environment for life. p. 1-20. In.J. D. van Elsan, J. T. Trevors, and E. M. H. Wellington (ed.) Modern soil microbiology. Dekker, New York, USA
  79. Subba Rao, N. S. 1981. Response of Crops to Azospirillum inoculation inIndia. p. 137-144. In P. B. Voswe, and A. P. Ruschel (ed.) Associative nitrogen fixation, Vol. I. CRC Press, Baca Raton, Florida, USA
  80. Subba Rao, N. S. 1986. Cereal nitrogen fixation research under the BNF coordinated project of ICAR. p. 23-30. In S. P. Wani (ed.) Cereal nitrogen fixation. International Crop Research Institute for Semiarid Tropics, Patancheru, India
  81. Subba Rao, N. S. 1993. Interaction of nodulated tree species with other microorganisms and plants. p. 54-84. In N. S. Subba Rao, and C. Rodriguez-Barruecco (ed.) Symbiosis in nitrogen fixing tree. Oxford and IBH Publishing Co., New Delhi, India
  82. Sukiman, H. L, and P. B. New. 1990. Relationship between root colonization and initial adsorption of Azospirillum to plant roots. Microb. Ecol. 20:65-74 https://doi.org/10.1007/BF02543867
  83. Tamilvendan, K., and D. Purushothaman. 1996. Developing phosphorus solubilizing strains in Azospirillum. p. 79-89. In Proceeding of thenational seminar on microorganisms. Madurai, India
  84. Tien. T. M., M. H. Gaskin, and D. H. Hubbell. 1979. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet(Penniestum americanum). Appl. Environ. Microb. 37: 1016-1024
  85. Tilak, K. V. B. R., C. S. Singh, and J. P. S. Rana 1981. Effects of combined inoculation of Azospirillum brasilense with Rhizobium trifoli, Rhizobium meliloti and Rhizobium sp. (cowpea miscellany) on nodulation and yield of clover (Trifolium repense), Lucerne (Medicago sativa) and chick pea (Cicer arietinum). Zbl. Bakt. II, Abt. 136:117-120
  86. Umali-Garcia, M., D. H. Hubbell, M. H. Gaskins, and F. B. Gazzo. 1981. Association of Azospirillum with grass roots. Appl. Environ. Microb. 29:219-226
  87. Van Berkum, P., and B. B. Bohlool. 1980. Evaluation of nitrogen fixation by bacteria in association with roots of tropical grasses. Microbiol. Mol. BioI. R. 44:491-517
  88. Vande Broek, A., and J. Vanderleyden. 1995. Genetics of Azospirillum-Plant root association - a review. Crit. Rev. Plant Sci. 14:445-46 https://doi.org/10.1080/713608123
  89. Vandehhove, H., R. Mercia, M. Van Steenbergen, and K. Vlassak. 1993. Microcalorimetric characterization, physiological stages and survival ability of Azospirillum brasilense. Soil BioI. Biochem. 25:513-519 https://doi.org/10.1016/0038-0717(93)90077-O
  90. Van-Dommelen, A., E. van Bostelaere, V. Keijers, and J. Verderleyden. 1997. Genetics of Azospirillum brasilense with respect to ammonium transport, sugar uptake and chemotaxis. Plant Soil 4:156-160.
  91. Wani, S. P. 1990. Inoculation with Associative nitrogen fixing bacteria: Role in cereal grain production improvement Indian J. Microbiol. 30:363-393
  92. Wani, S. P., S.Chandrapalaiah, M. A. Zambre, and K. K. Lee. 1988. Association between Ni-fixing bacteria and pearl millet plants: Response, mechanism and resistance. Plant Soil 110:289-302 https://doi.org/10.1007/BF02226810
  93. Watanabe. I., and C. Lin. 1984. Response of wetland rice to inoculation with Azospirillum lipoferum and Psuedomonas sp. Soil Sci. Plant Nutr. 30: 117-124 https://doi.org/10.1080/00380768.1984.10434675
  94. Wong, P. P., and M. E. Sternberg. 1979. Characterization of a bacterium of the genus Azospirillum from cellulolytic nitrogen fixing mixed cultures. Can. J. Microbiol. 26:291-296