Browse > Article
http://dx.doi.org/10.17137/korrae.2022.30.2.5

Preparation of Heated Tobacco Biomass-derived Carbon Material for Supercapacitor Application  

Kim, Jiwon (Department of Chemical and Biological Engineering, Hanbat National University)
Jekal, Suk (Department of Chemical and Biological Engineering, Hanbat National University)
Kim, Dong Hyun (Department of Chemical and Biological Engineering, Hanbat National University)
Yoon, Chang-Min (Department of Chemical and Biological Engineering, Hanbat National University)
Publication Information
Journal of the Korea Organic Resources Recycling Association / v.30, no.2, 2022 , pp. 5-15 More about this Journal
Abstract
In this study, heated tobacco biomass was prepared as an active material for supercapacitor device. Retrieved tobacco leaf from the heated tobacco was carbonized at various temperature(800/850/950℃). Carbonized tobacco leaf material synthesized at 850℃ exhibited the highest C/O ratio, indicating the finest carbon quality. In addition, polypyrrole was coated onto the carbonized leaf material for increasing the electrochemical performance via low-temperature polymerization method. As-synthesized carbonized leaf material at 850℃(CTL-850)-based electrode and polypyrrole-coated carbonized leaf material(CTL-850/PPy)-based electrode displayed outstanding specific capacitances of 100.2 and 155.3F g-1 at 1 A g-1 with opertaing window of -1.0V and 1.0V. Asymmetric supercapacitor device, assembled with CTL-850 as the negative electrode and CTL-850/PPy as the positive electrode, manifested specific capacitance of 31.1F g-1(@1 A g-1) with widened operating voltage window of 2.0V. Moreover, as-prepared asymmetric supercapacitor device was able to lighten up the RED Led (1.8V), suggesting the high capacitance and extension of operating voltage window. The result of this research may help to pave the new possibility toward preparing the effective energy storage device material recycling the biomass.
Keywords
Biomass; Eco-Friendly; Heated tobacco; Supercapacitor; Polypyrrole; Electrochemistry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Majumdar, S., Sen, P. and Ray, R., "Graphene oxide induced high dielectricity in CS/PMMA solid polymer electrolytes and the enhanced specific capacitance with Ag decorated MnCoFeO4 nanoparticles anchored graphene sheets in hybrid solid-state supercapacitors", Materials Research Bulletin, 151, p. 111814. (2022).   DOI
2 An, H. J., Kim, N. R., Song, M. Y., Yun, Y. S. and Jin, H.-J., "Fallen-leaf-derived microporous pyropolymers for supercapacitors", Journal of Industrial and Engineering Chemistry, 45, pp. 223~228. (2017).   DOI
3 Gangoli, V. S., Barnett, C. J., McGettrick, J. D., White, A. O. and Barron, A. R., "Increased Electrical Conductivity of Carbon Nanotube Fibers by Thermal and Voltage Annealing", Journal of Carbon Research, 8(1), p. 1. (2021).   DOI
4 Zhao, F., Ling, L., Liu, L., Zafar, A. and Ni, Z., "The dispersion of graphene in conductive epoxy composites investigated by Raman spectroscopy", Journal of Raman Spectroscopy, 48(3), pp. 432~436. (2017).   DOI
5 Wang, C., Zhan, Y., Wu, L., Li, Y. and Liu, J., "Highvoltage and high-rate symmetric supercapacitor based on MnO2-polypyrrole hybrid nanofilm", Nanotechnology, 25(30), p. 305401. (2014).   DOI
6 Zhang, D., Tan, C., Zhang, W., Pan, W., Wang, Q. and Li, L., "Expanded Graphite-Based Materials for Supercapacitors: A Review", Molecules, 27(3), p. 716. (2022).   DOI
7 Yan, J., Fan, Z., Sun, W., Ning, G., Wei, T., Zhang, Q., Zhang, R., Zhi, L. and Wei, F., "Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density", Advanced Functional Materials, 22(12), pp. 2632~2641. (2012).   DOI
8 Khomenko, V., Raymundo-pinero, E. and Beguin, F., "Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium", Journal of Power Sources, 153(1), pp. 183~190. (2006).   DOI
9 Novotny, T. E. and Slaughter, E., "Tobacco Product Waste: An Environmental Approach to Reduce Tobacco Consumption", Current Environmental Health Reports, 1(3), pp. 208~216. (2014).   DOI
10 Mumba, P. P. and Phiri, R., "Environmental Impact Assessment of Tobacco Waste Disposal", International Journal of Environmental Research, 2(3), pp. 225~230. (2008).
11 Jeon, J.-W., Zhang, L., Lutkenhaus, J. L., Laskar, D. D., Lemmon, J. P., Choi, D., Nandasiri, M. I., Hashmi, A., Xu, J., Motkuri, R. K., Fernandez, C. A., Liu, J., Tucker, M. P., McGrail, P. B., Yang, B. and Nune, S. K., "Controlling Porosity in Lignin-Derived Nanoporous Carbon for Supercapacitor Applications", ChemSusChem, 8(3), pp. 428~432. (2015).   DOI
12 Chew, S. Y., Feng, C., Ng, S. H., Wang, J., Guo, Z. and Liu, H., "Low-Temperature Synthesis of Polypyrrole-Coated LiV3O8 Composite with Enhanced Electrochemical Properties", Journal of The Electrochemical Society, 154(7), pp. A633~A637. (2007).   DOI
13 Xiong, Q., He, H. and Zhang, M., "Design of Flexible Films Based on Kinked Carbon Nanofibers for High Rate and Stable Potassium-Ion Storage", Nano-Micro Letters, 14(1), p. 47. (2022).   DOI
14 Li, W., Zhang, L., Peng, J., Li, N., Zhang, S. and Guo, S., "Effects of microwave irradiation on the basic properties of woodceramics made from carbonized tobacco stems impregnated with phenolic resin", Industrial Crops and Products, 28(2), pp. 143~154. (2008).   DOI
15 Zhu, Y., Zong, Q., Zhang, Q., Yang, H., Du, W., Wang, Q., Zhan, J. and Wang, H., "Ultra-long lifespan asymmetrical hybrid supercapacitor device based on hierarchical NiCoP@C@LDHs electrode", Electrochimica Acta, 334(8), p. 135589. (2020).   DOI
16 Qu, S., Wan, J., Dai, C., Jin, T. and Ma, F., "Promising as high-performance supercapacitor electrode materials porous carbons derived from biological lotus leaf", Journal of Alloys and Compounds, 751, pp. 107~116. (2018).   DOI
17 Cherubini, F., Peters, G. P., Berntsen, T., Stromman, A. H. and Hertwich, E., "CO2 emissions from biomass combustion for bioenergy: Atmospheric decay and contribution to global warming", GCB Bioenergy, 3(5), pp. 413~426. (2011).   DOI
18 Stocker, M., "Biofuels and Biomass-To-Liquid Fuels in the Biorefinery: Catalytic Conversion of Lignocellulosic Biomass using Porous Materials", Angewandte Chemie, 47(48), pp. 9200~9211. (2008).   DOI
19 Lee, M., Kim, G.-P., Song, H. D., Park, S. and Yi, J., "Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode", Nanotechnology, 25(34), p. 345601. (2014).   DOI
20 Raza, W., Ali, F., Raza, N., Luo, Y., Kim, K.-H., Yang, J., Kumar, S., Mehmood, A. and Kwon, E. E., "Recent advancements in supercapacitor technology", Nano Energy, 52, pp. 441~473. (2018).   DOI
21 Ahmad, R., Khan, U. A., Iqbal, N. and Noor, T., "Zeolitic imidazolate framework (ZIF)-derived porous carbon materials for supercapacitors: An overview", Royal Society of Chemisty, 10(71), pp. 43733~43750. (2020).
22 Liu, C., Yu, Z., Neff, D., Zhamu, A. and Jang, B. Z., "Graphene-Based Supercapacitor with an Ultrahigh Energy Density", Nano Letters, 10(12), pp. 4863~4868. (2010).   DOI
23 Frackowiak, E., "Carbon materials for supercapacitor application", Physical Chemistry Chemical Physics, 9(15), pp. 1774~1785. (2007).   DOI
24 Ji, H., Zhao, X., Qiao, Z., Jung, J., Zhu, Y., Lu, Y., Zhang, L. L., MacDonald, A. H. and Ruoff, R. S., "Capacitance of carbon-based electrical double-layer capacitors", Nature Communications, 5(1), p. 3317. (2014).   DOI
25 Gu, J., Abroms, L. C., Broniatowski, D. A. and Evans, W. D., "An Investigation of Influential Users in the Promotion and Marketing of Heated Tobacco Products on Instagram: A Social Network Analysis", International Journal of Environmental Research and Public Health, 19(3), p. 1686. (2022).   DOI
26 Augustyn, V., Simon, P. and Dunn, B., "Pseudocapacitive oxide materials for high-rate electrochemical energy storage", Energy & Environmental Science, 7(5), pp. 1597~1614. (2014).   DOI
27 Peng, Z., Wang, C., Zhang, Z. and Zhong, W., "Synthesis and Enhancement of Electroactive Biomass/Polypyrrole Hydrogels for High Performance Flexible All-Solid-State Supercapacitors", Advanced Materials Interfaces, 6(23), p. 1901393. (2019).   DOI
28 Choi, M., Lim, B. and Jang, J., "Synthesis of Mesostructured Conducting Polymer-Carbon Nanocomposites and Their Electrochemical Performance", Macromolecular Research, 16(3), pp. 200~203. (2008).   DOI
29 Thirumal, V., Yuvakkumar, R., Ravi, G., Dineshkumar, G., Ganesan, M., Alotaibi, S. H. and Velauthapillai, D., "Characterization of activated biomass carbon from tea leaf for supercapacitor applications", Chemosphere, 291(21), p. 132931. (2022).   DOI
30 Yun, Y. S., Park, M. H., Hong, S. J., Lee, M. E., Park, Y. W. and Jin, H.-J., "Hierarchically Porous Carbon Nanosheets from Waste Coffee Grounds for Supercapacitors", ACS Applied Materials & Interfaces, 7(6), pp. 3684~3690. (2015).   DOI
31 Park, D. K., Kim, D., Gu, J.-H. and Lee, S.-F., "Torrefaction Characteristics of Waste Biomass Derived from Livestock Manure", Journal of Korea Society of Waste Management, 37(5), pp. 366~373. (2020).   DOI
32 Xu, J., Wang, D., Yuan, Y., Wei, W., Duan, L., Wang, L., Bao, H. and Xu, W., "Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application", Organic Electronics, 24, pp. 153~159. (2015).   DOI
33 Du, C., Yeh, J. and Pan, N., "High power density supercapacitors using locally aligned carbon nanotube electrodes", Nanotechnology, 16(4), pp. 350~353. (2005).   DOI
34 Zhang, L. L. and Zhao, X. S., "Carbon-based materials as supercapacitor electrodes", Chemical Society Reviews, 38(9), pp. 2520~2531. (2009).   DOI
35 Wu, S. and Zhu, Y., "Highly densified carbon electrode materials towards practical supercapacitor devices", Science China Materials, 60(1), pp. 25~38 (2017).   DOI
36 Woo, G. J. and Kim, Y.-M., "Effect of Torrefaction on the Catalytic Pyrolysis of Miscanthus over HZSM-5 and HY", Journal of Korea Society of Waste Management, 37(8), pp. 542~548. (2020).   DOI
37 Kim, S. Y., Hong, J. and Palmore, G. T., "Polypyrrole decorated cellulose for energy storage applications", Synthetic Metals, 162(15-16), pp. 1478~1481. (2012).   DOI