• 제목/요약/키워드: Ordinary differential equation

검색결과 257건 처리시간 0.02초

Nonlinear oscillations of a composite microbeam reinforced with carbon nanotube based on the modified couple stress theory

  • M., Alimoradzadeh;S.D., Akbas
    • Coupled systems mechanics
    • /
    • 제11권6호
    • /
    • pp.485-504
    • /
    • 2022
  • This paper presents nonlinear oscillations of a carbon nanotube reinforced composite beam subjected to lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three different types of single walled carbon nanotubes distribution are considered through the thickness in polymeric matrix. The non-linear strain-displacement relationship is considered in the von Kármán nonlinearity. The governing nonlinear dynamic equation is derived with using of Hamilton's principle.The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The frequency response equation and the forced vibration response of the system are obtained. Effects of patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the nonlinear responses of the carbon nanotube reinforced composite beam are investigated.

4계 상미분방정식에 의한 변단면 Timoshenko 보의 자유진동 (Free Vibrations of Tapered Timoshenko Beam by using 4th Order Ordinary Differential Equation)

  • 이병구;박광규;이태은
    • 한국전산구조공학회논문집
    • /
    • 제25권3호
    • /
    • pp.185-194
    • /
    • 2012
  • 이 연구는 회전관성과 전단변형을 동시에 고려한 변단면 Timoshenko 보의 자유진동에 관한 연구이다. 변단면 보의 단면은 폭이 포물선 함수로 변화하는 변화폭 직사각형 단면으로 채택하였다. 이러한 보의 자유진동을 지배하는 수직변위에 대한 4계 상미분방정식을 유도하였다. 이 상미분방정식을 수치해석하여 고유진동수와 진동형을 산출하였다. 수치해석 예에서는 회전-회전, 회전-고정, 고정-고정 지점을 고려하였다. 진동형은 변위의 진동형뿐만 아니라 합응력의 진동형도 산출하여 그림에 나타내었다. 휨 회전각과 전단변형에 의한 수직변위 및 전단면 회전각의 구성비율을 산정하였다.

EXISTENCE OF SOLUTION OF FINITE SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS

  • Ohm, Mi-Ray
    • 대한수학회보
    • /
    • 제31권2호
    • /
    • pp.309-318
    • /
    • 1994
  • The approach presented in this paper is based on the transformation of the Stefan problem in one space dimension to an initial-boundary value problem for the heat equation in a fixed domain. Of course, the problem is non-linear. The finite element approximation adopted here is the standared continuous Galerkin method in time. In this paper, only the regular case is discussed. This means the error analysis is based on the assumption that the solution is sufficiently smooth. The aim of this paper is the existence of the solution in a finite Galerkin system of ordinary equations.

  • PDF

Bayes and Sequential Estimation in Hilbert Space Valued Stochastic Differential Equations

  • Bishwal, J.P.N.
    • Journal of the Korean Statistical Society
    • /
    • 제28권1호
    • /
    • pp.93-106
    • /
    • 1999
  • In this paper we consider estimation of a real valued parameter in the drift coefficient of a Hilbert space valued Ito stochastic differential equation. First we consider observation of the corresponding diffusion in a fixed time interval [0, T] and prove the Bernstein - von Mises theorem concerning the convergence of posterior distribution of the parameter given the observation, suitably normalised and centered at the MLE, to the normal distribution as Tlongrightarrow$\infty$. As a consequence, the Bayes estimator of the drift parameter becomes asymptotically efficient and asymptotically equivalent to the MLE as Tlongrightarrow$\infty$. Next, we consider observation in a random time interval where the random time is determined by a predetermined level of precision. We show that the sequential MLE is better than the ordinary MLE in the sense that the former is unbiased, uniformly normally distributed and efficient but is latter is not so.

  • PDF

Nonlinear vibration analysis of carbon nanotube-reinforced composite beams resting on nonlinear viscoelastic foundation

  • M. Alimoradzadeh;S.D. Akbas
    • Geomechanics and Engineering
    • /
    • 제32권2호
    • /
    • pp.125-135
    • /
    • 2023
  • Nonlinear vibration analysis of composite beam reinforced by carbon nanotubes resting on the nonlinear viscoelastic foundation is investigated in this study. The material properties of the composite beam is considered as a polymeric matrix by reinforced carbon nanotubes according to different distributions. With using Hamilton's principle, the governing nonlinear partial differential equations are derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The nonlinear natural frequency and the nonlinear free response of the system is obtained. In addition, the effects of different patterns of reinforcement, linear and nonlinear damping coefficients of the viscoelastic foundation on the nonlinear vibration responses and phase trajectory of the carbon nanotube reinforced composite beam are investigated.

THE METHOD OF QUASILINEARIZATION AND A THREE-POINT BOUNDARY VALUE PROBLEM

  • Eloe, Paul W.;Gao, Yang
    • 대한수학회지
    • /
    • 제39권2호
    • /
    • pp.319-330
    • /
    • 2002
  • The method of quasilinearization generates a monotone iteration scheme whose iterates converge quadratically to a unique solution of the problem at hand. In this paper, we apply the method to two families of three-point boundary value problems for second order ordinary differential equations: Linear boundary conditions and nonlinear boundary conditions are addressed independently. For linear boundary conditions, an appropriate Green\`s function is constructed. Fer nonlinear boundary conditions, we show that these nonlinearities can be addressed similarly to the nonlinearities in the differential equation.

A STUDY ON SOLUTIONS OF A CLASS OF HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS

  • Kim, Yong-Ki
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제5권2호
    • /
    • pp.156-162
    • /
    • 1998
  • The main objective of this paper is to study the boundedness of solutions of the differential equation $L_{n} {\chi}+F(t,{\chi}) = f(t), n {\geq} 2 $(*) Necessary and sufficient conditions for boundedness of all solutions of (*) will be obtainded. The asymptotic behavior of solutions of (*) will also be studied.

  • PDF

비선형 경계조건을 가진 보의 정규모드진동 (Normal Mode Vibrations of a Beam with a Nonlinear Boundary Condition)

  • 김현기;이원경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.392-398
    • /
    • 1998
  • In order to check the validity of nonlinear normal modes of continuous, systems by means of the energy-based formulation, we consider a beam with a nonlinear boundary condition. The initial and boundary e c6nsl of a linear partial differential equation and a nonlinear boundary condition is reduced to a linear boundary value problem consisting of an 8th order ordinary differential equations and linear boundary conditions. After obtaining the asymptotic solution corresponding to each normal mode, we compare this with numerical results by the finite element method.

  • PDF

A GENERAL MULTIPLE-TIME-SCALE METHOD FOR SOLVING AN n-TH ORDER WEAKLY NONLINEAR DIFFERENTIAL EQUATION WITH DAMPING

  • Azad, M. Abul Kalam;Alam, M. Shamsul;Rahman, M. Saifur;Sarker, Bimolendu Shekhar
    • 대한수학회논문집
    • /
    • 제26권4호
    • /
    • pp.695-708
    • /
    • 2011
  • Based on the multiple-time-scale (MTS) method, a general formula has been presented for solving an n-th, n = 2, 3, ${\ldots}$, order ordinary differential equation with strong linear damping forces. Like the solution of the unified Krylov-Bogoliubov-Mitropolskii (KBM) method or the general Struble's method, the new solution covers the un-damped, under-damped and over-damped cases. The solutions are identical to those obtained by the unified KBM method and the general Struble's method. The technique is a new form of the classical MTS method. The formulation as well as the determination of the solution from the derived formula is very simple. The method is illustrated by several examples. The general MTS solution reduces to its classical form when the real parts of eigen-values of the unperturbed equation vanish.