Browse > Article
http://dx.doi.org/10.12989/csm.2022.11.6.485

Nonlinear oscillations of a composite microbeam reinforced with carbon nanotube based on the modified couple stress theory  

M., Alimoradzadeh (Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University)
S.D., Akbas (Department of Civil Engineering, Bursa Technical University)
Publication Information
Coupled systems mechanics / v.11, no.6, 2022 , pp. 485-504 More about this Journal
Abstract
This paper presents nonlinear oscillations of a carbon nanotube reinforced composite beam subjected to lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three different types of single walled carbon nanotubes distribution are considered through the thickness in polymeric matrix. The non-linear strain-displacement relationship is considered in the von Kármán nonlinearity. The governing nonlinear dynamic equation is derived with using of Hamilton's principle.The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The frequency response equation and the forced vibration response of the system are obtained. Effects of patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the nonlinear responses of the carbon nanotube reinforced composite beam are investigated.
Keywords
carbon nanotubes; composite beams; modified couple stress theory; nonlinear oscillations;
Citations & Related Records
Times Cited By KSCI : 34  (Citation Analysis)
연도 인용수 순위
1 Akbas, S.D. (2013), "Free vibration characteristics of edge cracked functionally graded beams by using finite element method", Int. J. Eng. Trend. Technol., 4(10), 4590-4597.
2 Akbas, S.D. (2014), "Free vibration of axially functionally graded beams in thermal environment", Int. J. Eng. Appl. Sci., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224.   DOI
3 Akbas, S.D. (2016), "Static analysis of a nano plate by using generalized differential quadrature method", Int. J. Eng. Appl. Sci., 8(2), 30-39. https://doi.org/10.24107/ijeas.252143.   DOI
4 Akbas, S.D. (2017), "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155. https://doi.org/10.24107/ijeas.322375.   DOI
5 Akbas, S.D. (2018a), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., 27(1), 59-70. https://doi.org/10.12989/was.2018.27.1.059.   DOI
6 Akbas, S.D. (2018b), "Large deflection analysis of a fiber reinforced composite beam", Steel Compos. Struct., 27(5), 567-576. http://doi.org/10.12989/scs.2018.27.5.567.   DOI
7 Akbas, S.D. (2018c), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4), 337-346. http://doi.org/10.12989/sem.2018.67.4.337.   DOI
8 Akbas, S.D. (2018d), "Investigation of static and vibration behaviors of a functionally graded orthotropic beam", Balikesir Universitesi Fen Bilimleri Enstitusu Dergisi, 1-14. https://doi.org/10.25092/baunfbed.343227.   DOI
9 Akbas, S.D. (2019a), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Comput. Mech., 5(2), 477-485. http://doi.org/10.22055/JACM.2018.26819.1360.   DOI
10 Akbas, S.D. (2019b), "Hygro-thermal post-buckling analysis of a functionally graded beam", Couple. Syst. Mech., 8(5), 459-471. http://doi.org/10.12989/csm.2019.8.5.459.   DOI
11 Akbas, S.D. (2019c), "Hygrothermal post-buckling analysis of laminated composite beams", Int. J. Appl. Mech., 11(01), 1950009. https://doi.org/10.1142/S1758825119500091.   DOI
12 Akbas, S.D. (2019d), "Nonlinear static analysis of laminated composite beams under hygro-thermal effect", Struct. Eng. Mech., 72(4), 433-441. http://doi.org/10.12989/sem.2019.72.4.433.   DOI
13 Akbas, S.D. (2019e), "Post-buckling analysis of a fiber reinforced composite beam with crack", Eng. Fract. Mech., 212, 70-80. https://doi.org/10.1016/j.engfracmech.2019.03.007.   DOI
14 Akbas, S.D. (2019f), "Nonlinear behavior of fiber reinforced cracked composite beams", Steel Compos. Struct., 30(4), 327-336. https://doi.org/10.12989/scs.2019.30.4.327.   DOI
15 Akbas, S.D. (2019g), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., https://doi.org/10.22059/JCAMECH.2019.281285.392.   DOI
16 Akbas, S.D. (2020a), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.   DOI
17 Akbas, S.D. (2020b), "Geometrically nonlinear analysis of axially functionally graded beams by using finite element method", J. Comput. Appl. Mech., 51(2), 411-416. https://doi.org/10.22059/JCAMECH.2020.309019.548.   DOI
18 Akbas, S.D. (2020c), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729.   DOI
19 Akbas, S.D. (2021a), "Forced vibration responses of axially functionally graded beams by using Ritz Method", J. Appl. Comput. Mech., 7(1), 109-115. http://doi.org/10.22055/JACM.2020.34865.2491.   DOI
20 Akbas, S.D. (2020d), "Dynamic analysis of a laminated composite beam under harmonic load", Couple. Syst. Mech., 9(6), 563. http://doi.org/10.12989/csm.2020.9.6.563.   DOI
21 Akbas, S.D. (2021b), "Dynamic analysis of axially functionally graded porous beams under a moving load" Steel Compos. Struct., 39(6), 811-821. https://doi.org/10.12989/scs.2021.39.6.811.   DOI
22 Akbas, S.D. (2021c), "Forced vibration analysis of a fiber reinforced composite beam", Adv. Mater. Res., 10(1), 57-66. https://doi.org/10.12989/amr.2021.10.1.057.   DOI
23 Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/scs.2022.42.5.649.   DOI
24 Akbas, S.D. and Kocaturk, T. (2012), "Post-buckling analysis of Timoshenko beams with temperaturedependent physical properties under uniform thermal loading", Struct. Eng. Mech., 44(1), 109-125. https://doi.org/10.12989/sem.2012.44.1.109.   DOI
25 Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Therm. Stress., 36(12), 1233-1254. https://doi.org/10.1080/01495739.2013.788397.   DOI
26 Al-Furjan, M.S.H., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020d), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01088-7.   DOI
27 Al-Furjan, M.S.H., Habibi, M., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2020c), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01130-8.   DOI
28 Al-Furjan, M.S.H., Habibi, M., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020b), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. Comput., 1-24. https://doi.org/10.1007/s00366-020-01144-2.   DOI
29 Al-Furjan, M.S.H., Habibi, M., Ghabussi, A., Safarpour, H., Safarpour, M. and Tounsi, A. (2021a), "Nonpolynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory", Eng. Struct., 228, 111496. https://doi.org/10.1016/j.engstruct.2020.111496.   DOI
30 Al-Furjan, M.S.H., Habibi, M., Ni, J. and Tounsi, A. (2020a), "Frequency simulation of viscoelastic multiphase reinforced fully symmetric systems", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01200-x.   DOI
31 Al-Furjan, M.S.H., Habibi, M., Shan, L. and Tounsi, A. (2021b), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150.   DOI
32 Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic microcomposite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.   DOI
33 Alimoradzadeh, M. and Akbas, S.D. (2021), "Superharmonic and subharmonic resonances of atomic force microscope subjected to crack failure mode based on the modified couple stress theory", Eur. Phys. J. Plus, 136, 536. https://doi.org/10.1140/epjp/s13360-021-01539-0.   DOI
34 Alimoradzadeh, M., Akbas, S.D. and Esfrajani, S.M. (2021), "Nonlinear dynamic and stability of a beam resting on the nonlinear elastic foundation under thermal effect based on the finite strain theory", Struct. Eng. Mech., 80(3), 275-284. https://doi.org/10.12989/sem.2021.80.3.275.   DOI
35 Alimoradzadeh, M. and Akbas, S.D. (2022a), "Nonlinear dynamic responses of cracked atomic force microscopes", Struct. Eng. Mech., 82(6), 747-756. https://doi.org/10.12989/sem.2022.82.6.747.   DOI
36 Alimoradzadeh, M. and Akbas, S.D. (2022b), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/sem.2022.81.6.705.   DOI
37 Alimoradzadeh, M. and Akbas, S.D. (2022c), "Superharmonic and subharmonic resonances of a carbon nanotube-reinforced composite beam", Adv. Nano Res., 12(4), 353-363. https://doi.org/10.12989/anr.2022.12.4.353.   DOI
38 Alimoradzadeh, M., Salehi, M. and Esfarjani, S.M. (2019), "Nonlinear dynamic response of an axially functionally graded (AFG) beam resting on nonlinear elastic foundation subjected to moving load", Nonlin. Eng., 8(1), 250-260. https://doi.org/10.1515/nleng-2018-0051.   DOI
39 Alimoradzadeh, M., Salehi, M. and Esfarjani, S.M. (2020), "Nonlinear vibration analysis of axially functionally graded microbeams based on nonlinear elastic foundation using modified couple stress theory", Periodica Polytechnica Mech. Eng., 64(2), 97-108. https://doi.org/10.3311/PPme.11684.   DOI
40 Ansari, M., Esmailzadeh, E. and Younesian, D. (2010), "Internal-external resonance of beams on non-linear viscoelastic foundation traversed by moving load", Nonlin. Dyn., 61(1), 163-182. https://doi.org/10.1007/s11071-009-9639-0.   DOI
41 Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., ... & Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput. Concrete, 26(3), 213-226. http://doi.org/10.12989/cac.2020.26.3.213.   DOI
42 Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A. (2021), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01382-y.   DOI
43 Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.   DOI
44 Babu Arumugam, A., Rajamohan, V., Bandaru, N., Sudhagar, P.E. and Kumbhar, S.G. (2019), "Vibration analysis of a carbon nanotube reinforced uniform and tapered composite beams", Arch. Acoust., 44(02), 309-320. http://doi.org/10.24425/aoa.2019.128494.   DOI
45 Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elasticfoundation", Comput. Concrete, 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485.   DOI
46 Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A. and Tounsi, A. (2020). Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.   DOI
47 Chu, H., Li, Y., Wang, C., Zhang, H. and Li, D. (2020), "Recent investigations on nonlinear absorption properties of carbon nanotubes", Nanophoton., 9(4), 761-781. https://doi.org/10.1515/nanoph-2020-0085.   DOI
48 Ghayesh, M.H. (2019), "Viscoelastic nonlinear dynamic behaviour of Timoshenko FG beams", Eur. Phys. J. Plus, 134(8), 401. https://doi.org/10.1140/epjp/i2019-12472-x.   DOI
49 Fernandes, R., Mousavi, S.M. and El-Borgi, S. (2016), "Free and forced vibration nonlinear analysis of a microbeam using finite strain and velocity gradients theory", Acta Mechanica, 227(9), 2657-2670. https://doi.org/10.1007/s00707-016-1646-x.   DOI
50 Fernandes, R., Mousavi, S.M. and El-Borgi, S. (2016), "Free and forced vibration nonlinear analysis of a microbeam using finite strain and velocity gradients theory", Acta Mechanica, 227(9), 2657-2670. https://doi.org/10.1007/s00707-016-1646-x.   DOI
51 Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021b), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01399-3.   DOI
52 Guo, X.Y. and Zhang, W. (2016), "Nonlinear vibrations of a reinforced composite plate with carbon nanotubes", Compos. Struct., 135, 96-108. https://doi.org/10.1016/j.compstruct.2015.08.063.   DOI
53 Heidari, F., Taheri, K., Sheybani, M., Janghorban, M. and Tounsi, A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel Compos. Struct., 38(5), 533-545. http://doi.org/10.12989/scs.2021.38.5.533.   DOI
54 Heidari, M. and Arvin, H. (2019), "Nonlinear free vibration analysis of functionally graded rotating composite Timoshenko beams reinforced by carbon nanotubes", J. Vib. Control, 25(14), 2063-2078. http://doi.org/10.1016/j.compstruct.2016.12.009.   DOI
55 Kirlangic, O. and Akbas, S.D. (2020), "Comparison study between layered and functionally graded composite beams for static deflection and stress analyses", J. Comput. Appl Mech., 51(2), 294-301. https://doi.org/10.22059/JCAMECH.2020.296319.473.   DOI
56 Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021a), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Arch. Civil Mech. Eng., 21(4), 1-15. https://doi.org/10.1007/s43452-021-00291-7.   DOI
57 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(56-58), 56-58. http://doi.org/10.1038/354056a0.   DOI
58 Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92(3), 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024.   DOI
59 Kirlangic, O. and Akbas, S.D. (2021), "Dynamic responses of functionally graded and layered composite beams", Smart Struct. Syst., 27(1), 115-122. https://doi.org/10.12989/sss.2021.27.1.115.   DOI
60 Kocaturk, T. and Akbas, S.D. (2010), "Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material", Struct. Eng. Mech., 35(6), 677-697. https://doi.org/10.12989/sem.2010.35.6.677.   DOI
61 Kocaturk, T. and Akbas, S.D. (2011), "Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading", Struct. Eng. Mech., 40(3), 347-371. https://doi.org/10.12989/sem.2011.40.3.347.   DOI
62 Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417.   DOI
63 Ponnusami, S.A., Gupta, M. and Harursampath, D. (2019), "Asymptotic modeling of nonlinear bending and buckling behavior of carbon nanotubes", AIAA J., 57(10), 4132-4140. https://doi.org/10.2514/1.J057564.   DOI
64 Kong, S., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46(5), 427-37. https://doi.org/10.1016/j.ijengsci.2007.10.002.   DOI
65 Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1), 1-17. http://doi.org/10.12989/anr.2021.11.1.001.   DOI
66 Nayfeh, A.H., Mook, D.T. and Holmes, P. (1980), "Nonlinear oscillations", ASME. J. Appl. Mech, 47(3), 692. https://doi.org/10.1115/1.3153771.   DOI
67 Rafiee, M., He, X.Q. and Liew, K.M. (2014), "Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection", Int. J. Nonlin. Mech., 59, 37-51. https://doi.org/10.1016/j.ijnonlinmec.2013.10.011.   DOI
68 Ramezani, S. (2012), "A micro scale geometrically non-linear Timoshenko beam model based on strain gradient elasticity theory", Int. J. Nonlin. Mech., 47(8), 863-873. https://doi.org/10.1016/j.ijnonlinmec.2012.05.003.   DOI
69 Rao, S.S. (2007), Vibration of Continuous Systems, Wiley, New York, NY, USA.
70 Rouabhia, A., Heireche, H., Khelifi, S., Sahouane, N., Dabou, R., Ziane, A. and Tounsi, A. (2020), "Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory", ICREATA'21, 180.
71 Simsek, M. (2014), "Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He's variational method", Compos. Struct., 112, 264-272. https://doi.org/10.1016/j.compstruct.2014.02.010.   DOI
72 Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., 24(1), 65-77. http://doi.org/10.12989/scs.2017.24.1.065.   DOI
73 Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.   DOI
74 Shi, Z., Yao, X., Pang, F. and Wang, Q. (2017), "An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions", Scientif. Report., 7(1), 1-18. https://doi.org/10.1038/s41598-017-12596-w.   DOI
75 Tagrara SH, Benachour A, Bouiadjra MB, Tounsi A (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. http://doi.org/10.12989/scs.2015.19.5.1259.   DOI
76 Thang, P.T., Nguyen, T.T. and Lee, J. (2017), "A new approach for nonlinear buckling analysis of imperfect functionally graded carbon nanotube-reinforced composite plates", Compos. Part B: Eng., 127, 166-174. http://doi.org/10.1016/j.compositesb.2016.12.002.   DOI
77 Ton-That, H.L. (2020), "The linear and nonlinear bending analyses of functionally graded carbon nanotubereinforced composite plates based on the novel four-node quadrilateral element", Eur. J. Comput. Mech., 139-172. https://doi.org/10.13052/ejcm2642-2085.2915.   DOI
78 Wattanasakulpong, N. and Ungbhakorn, V. (2013), Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. http://doi.org/10.1016/j.commatsci.2013.01.028.   DOI
79 Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2019), "Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures", Polym. Compos., 40(S1), E102-E126. https://doi.org/10.1002/pc.24520.   DOI
80 Van Do, V.N., Jeon, J.T. and Lee, C.H. (2020), "Dynamic analysis of carbon nanotube reinforced composite plates by using Bezier extraction based isogeometric finite element combined with higher-order shear deformation theory", Mech. Mater., 142, 103307. http://doi.org/10.1016/j.mechmat.2019.103307.   DOI
81 Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration analysis of an embedded multiwalled carbon nanotube", Adv. Nano Res., 6(2), 163. https://doi.org/10.12989/anr.2018.6.2.163.   DOI
82 Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.   DOI
83 Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Ves. Pip., 98, 119-128. http://doi.org/10.1016/j.ijpvp.2012.07.012.   DOI
84 Zerrouki, R., Karas, A., Zidour, M., Bousahla, A.A., Tounsi, A., Bourada, F., ... & Mahmoud, S.R. (2021), "Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nanocomposite beam", Struct. Eng. Mech., 78(2), 117-124. http://doi.org/10.12989/sem.2021.78.2.117.    DOI