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A GENERAL MULTIPLE-TIME-SCALE METHOD FOR

SOLVING AN n-TH ORDER WEAKLY NONLINEAR

DIFFERENTIAL EQUATION WITH DAMPING

M. Abul Kalam Azad, M. Shamsul Alam, M. Saifur Rahman,
and Bimolendu Shekhar Sarker

Abstract. Based on the multiple-time-scale (MTS) method, a general
formula has been presented for solving an n-th, n = 2, 3, . . . , order or-
dinary differential equation with strong linear damping forces. Like the

solution of the unified Krylov-Bogoliubov-Mitropolskii (KBM) method
or the general Struble’s method, the new solution covers the un-damped,
under-damped and over-damped cases. The solutions are identical to
those obtained by the unified KBM method and the general Struble’s

method. The technique is a new form of the classical MTS method. The
formulation as well as the determination of the solution from the derived
formula is very simple. The method is illustrated by several examples.

The general MTS solution reduces to its classical form when the real parts
of eigen-values of the unperturbed equation vanish.

1. Introduction

In [5] Hassan has proved that the Krylov-Bogoliubov-Mitropolskii (KBM)
method [4, 7] is equivalent to the multiple-time-scale (MTS) method [10, 11]
for any order of approximation. Hassan has limited his investigation to second
approximation of some second-order ordinary differential equations with small
damping effect. But some authors extended these methods to similar second-
order differential equation with strong damping effects as well as to higher order
differential equations. Popov [12] extended the KBM method to second-order
equations with a strong linear damping force. Then utilizing Popov’s technique,
Bojadziev [1] investigated a damped forced vibration. On the other hand, Bo-
jadziev [2] extended the two-time-scale method to second-order systems with
strong damping. Murty et al. [9] extended the KBM method to second- and
fourth-order over-damped systems. Murty [8] presented a unified KBM method
for solving a second-order differential equation, which covers the three cases,
i.e., un-damped, under-damped and over-damped. Recently, Shamsul [14] has
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generalized Murty’s technique [8] for solving an n-th, n = 2, 3, . . ., order equa-
tion

(1) x(n) + c1x
(n−1) + · · ·+ cnx = εf(x, ẋ, . . .),

where x(j), j ≥ 4 represents a j -th derivative of x, over-dot is used for the
first-, second- and third-derivatives, ϵ is a small parameter, cj , j = 1, 2, . . . , n
are constants and f is a nonlinear function.

Shamsul [15] further extended the unified KBM method to study some non-
linear differential equations with slowly varying coefficients. In another recent
paper, Shamsul et al. [17] have generalized the Struble’s technique for solv-
ing Eq.(1) and show that the solutions obtained for various damping effect of
second- and third-order nonlinear equations are identical to those determined
by the unified KBM method [14, 15]. In this paper a general MTS method is
presented and it is shown that the solutions are identical to those obtained by
the unified KBM [14, 15] method and the general Struble’s method [17].

2. The method

To solve Eq.(1), an approximate solution is chosen in the form [15]

(2) x(t, ε) =
n∑
j=1

aj(t) + εu1(a1, a2, . . . , an) + ε2u2(a1, a2, . . . , an) + · · · .

In this paper a set of variables aj , j = 1, 2, . . . , n, have been considered rather
than the amplitude and phase variables. Recently these variables are used to
present a general formula for solving an n-th, n = 2, 3, . . . , order differential
equation with slowly varying coefficients according to the unified KBM method
(see [15] for details). Under a suitable transformation, the variables, aj , j =
1, 2, . . . , n, are transformed to the amplitude and phase variables. The choice
of the new variables (i.e., aj , j = 1, 2, . . . , n) is important for the formulation
of the method as well as determination of an approximate solution from the
derived formula. Generally, all the variables, aj , j = 1, 2, . . . , n, depend on
several time t0, t1, t2, . . ., where t = t0 + εt1 + ε2t2 + · · · . Herein we denote
some notations and a relation as

(3) Dk() = ∂()/∂tk, k = 0, 1, 2, . . . , D0aj = λjaj .

Now we can rewrite Eq.(1) as

(4)
n∏
j=1

(D − λj)x = εf,

where λj , j = 1, 2, . . . , n, are eigen-values of the unperturbed equation of
Eq.(1). Substituting Eq.(2) into Eq.(4) and equating the coefficients of ε1, ε2,
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we obtain

(5)

n∑
j=1

 n∏
k=1, k ̸=j

(D0 − λk)(D1aj)

+

n∏
j=1

(D0 − λj)u1

= f(Σnj=1aj , Σ
n
j=1D0aj , . . .)

n∑
j=1

 n∏
k=1, k ̸=j

(D0 − λk)(D2aj)


+ [D1(D

n−1
0 + c1D

n−2
0 + c2D

n−3
0 + · · · )

+D0D1(D
n−2
0 + c1D

n−3
0 + · · · ) +D2

0D1(D
n−3
0 + · · · ) + · · · ]u1

+

n∑
j=1

[D1(D
n−2
0 + c

(j)
1 Dn−3

0 + · · · ) +D0D1(D
n−3
0 + c

(j)
1 Dn−4

0 + · · · )

+D2
0D1(D

n−4
0 + · · · ) + · · · ](D1aj) +

n∏
j=1

(D0 − λj)u2

= u1fx(Σ
n
j=1aj , Σ

n
j=1D0aj , . . .)

+ (D0u1 +Σnj=1D0aj)× fẋ(Σ
n
j=1aje

λjt, Σnj=1D0aj , . . .) + · · · ,

where c
(j)
1 , c

(j)
2 , . . . , c

(j)
n−1 are the coefficients of the algebraic equation

(6)
n∏

j/=1, j/ ̸=j

(λ− λj/) = 0.

We can easily find a second approximate solution of Eq. (1) utilizing formula
Eq.(5). To avoid the secular terms in solution of Eq.(2), it has been proposed in
[15] that u1, u2, . . . exclude the terms · · · am2l−1

2l−1 am2l

2l · · · , m2l−1 −m2l−1 = ±1,
l = 1, 2, . . . , n/2 or (n− 1)/2 according to n is even or odd. This assumption
assures that u1, u2, . . . as well as solution Eq.(2) will be free from secular terms.
When n is an odd number, an additional restriction is imposed that u1, u2, . . .
exclude all the terms involving an (see [3, 15] for details).

3. Example

3.1. A second-order equation

Let us consider the Duffing equation with linear damping

(7) ẍ+ 2kẋ+ w2x = −εx3, 0 < ε < 1.

This equation represents the un-damped, under-damped and over-damped
cases depending on the value of damping coefficient, k. If k vanishes, the
motion becomes un-damped and periodic. On the other hand, the motion will
be under-damped or over-damped if 0 < k < w or w < k. The unperturbed
equation has two eigen-values λ1 = −k + iω, λ2 = −k − iω when 0 ≤ k < w,
ω2 = w2 − k2. On the contrary, they become λ1 = −k+ ω, λ2 = −k− ω when
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w < k. Since f = −x3, we obtain f = −(a1 + a2)
3, fx = −3(a1 + a2)

2, and
formula Eq.(5) becomes

(8)
(D0 − λ2)(D1a1) + (D0 − λ1)(D1a2) + (D0 − λ1)(D0 − λ2)u1

= − a31 − 3a21a2 − 3a1a
2
2 − a32,

(9)

(D0 − λ2)(D2a1) + (D0 − λ1)(D2a2) + (D0 − λ1)(D0 − λ2)u2

+D2
1(a1 + a2) + [D0D1 +D1D0 − (λ1 + λ2)D1]u1

= − 3(a21 + 2a1a2 + a22)u1.

To solve Eq.(8), it has already been restricted that u1 excludes terms a21a2
and a1a

2
2 (see Section 2). Therefore, Eq.(8) can be separated into three parts

for D1a1, D1a2 and u1 as

(10) (D0 − λ2)(D1a1) = −3a21a2,

(11) (D0 − λ1)(D1a2) = −3a1a
2
2,

(12) (D0 − λ1)(D0 − λ2)u1 = −(a31 + a32).

Solving the above three equations (see Appendix A and also [15] for solution
technique), we obtain

(13) D1a1 = l1a
2
1a2, D1a2 = l∗1a1a

2
2, l1 = −3/(2λ1), l∗1 = −3/(2λ2),

and

(14) u1 = C1a
3
1 +C∗

1a
3
2, C1 = −1/[2λ1(3λ1 −λ2)], C

∗
1 = −1/[2λ2(3λ2 −λ1)].

Substituting the values of u1 from Eq.(14) into Eq.(9), utilizing the relations
of Eq.(13) and then imposing the restriction that u2 excludes the terms a31a

2
2

and a21a
3
2, equations for D2a1, D2a2 and u2 can be separated into three parts

as

(15) (D0 − λ2)(D2a1) = −[l1(2l1 + l∗1) + 3C1]a
3
1a

2
2,

(16) (D0 − λ1)(D2a2) = −[l∗1(l1 + 2l∗1) + 3C∗
1 ]a

2
1a

3
2,

(17)
(D0 − λ1)(D0 − λ2)u2

= − 6[C1(3λ1l1 + 1)a41a2 + C∗
1 (3λ2l

∗
1 + 1)a1a

4
2]− 3(C1a

5
1 + C∗

1a
5
2).

Solving Eqs.(15)-(17), we obtain

(18)

D2a1 = l2a
3
1a

2
2,

D2a2 = l∗2a
2
1a

3
2,

l2 = −[l1(2l1 + l∗1) + 3C1]/(3λ1 + λ2),

l∗2 = −[l∗1(2l
∗
1 + l1) + 3C∗

1 ]/(3λ2 + λ1),
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(19)

u2 = c2a
4
1a2 + c∗2a1a

4
2 + e2a

5
1 + e∗2a

5
2,

c2 = −3c1(3λ1l1 + 1)/[2λ1(3λ1 + λ2)],

c∗2 = −3c∗1(3λ2l
∗
1 + 1)/[2λ2(3λ2 + λ1)],

e2 = −3c1/[4λ1(5λ1 − λ2)],

e∗2 = −3c∗1/[2λ2(3λ2 − λ1)].

All these results obtained in Eqs.(13)-(14), (18)-(19) give the second approx-
imate solution of Eq.(7). Now we write the variational equations as follows

(20)
ȧ1 = Da1 = (D0 + εD1 + · · · ) a1 = λ1a1 + εl1a

2
1a2 + ε2l2a

3
1a

2
2 +O(ε3),

ȧ2 = Da2 = (D0 + εD1 + · · · ) a2 = λ2a2 + εl∗1a1a
2
2 + ε2l∗2a

2
1a

3
2 +O(ε3).

Using the unified KBM method [14] and general Struble’s technique [17],
we will have the same result as obtained in Eq.(20). As a verification of this
result, we may choose a known problem. Rink [13] found a third approximate
solution of ẍ + 3ẋ + 2x = µx3, µ << 1, based on the KBM method. We
shall compare our solution to that of Rink. Clearly, this equation is similar
to equation, ẍ + 2kẋ + ω2x = −εx3, where 2k = 3, ω2 = 2 and ε = −µ. In
this case λ1 = −1 and λ2 = −2. Therefore, l1 = 3/2, l∗1 = 3/4, C1 = −1/2,
C∗

1 = −1/20; l2 = 33/40, l∗2 = 3/10, C2 = −21/40, C∗
2 = −3/160; E2 = 1/8,

E∗
2 = 1/480. Substituting the values of l1, l

∗
1, l2, l

∗
2 into Eq.(20) and replacing

the variables a1, a2 by 1
2ae

φ, 1
2ae

−φ, we obtain

(21)
(ȧ+ aφ̇)eφ/2 = −aeφ/2− 3ε(a/2)3eφ/2 + 33ε2(a/2)5eφ/40 + O(ε3),

(ȧ− aφ̇)e−φ/2 = −ae−φ − 3ε(a/2)3e−φ/4 + 3ε2(a/2)5e−φ/10 + O(ε3).

By adding and subtracting, we can easily obtain the values of ȧ and φ̇ as
follows:

(22)
ȧ = −3a/2 + 9εa3/32 + 9ε2a5/256 + O(ε3),

φ̇ = 1/2 + 3εa2/32 + 21ε2a4/1280 + O(ε3).

Now substituting the values of C1, C
∗
1 ; C2, C

∗
2 , E2, E

∗
2 into Eqs.(14), (19),

and replacing the variables a1, a2 by 1
2ae

φ, 1
2ae

−φ, we obtain

(23)

u1 = − a3e−9t/2[11 cosh 3(t/2 + φ) + 9 sinh 3(t/2 + φ)]/160,

u2 = a5e−15t/2[−261 cosh 3(t/2 + φ)− 243 sinh 3(t/2 + φ)

+ 61 cosh 5(t/2 + φ) + 59 sinh 5(t/2 + φ)]/15360.

All these results of Eqs.(22) and (23) are similar to those obtained by Rink
[13]. Equations (22) and (23) can be brought to exact form of Rink if we
substitute t/2 + φ = ψ and replace ϵ by −µ (in [17] Struble’s general solution
compared to Rink’s solution and had the same result).

If the damping force is absent, the motion becomes un-damped and periodic.
In this case the eigen-values become λ1 = iw, λ2 = −iw and l1 = 3i/(2w),
l∗1 = −3i/(2w), C1 = C∗

1 = 1/(8w2); l2 = −15i/(16w3), l∗2 = 15i/(16w3);
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C2 = C∗
2 = −21/(64w4); E2 = E∗

2 = 1/(64w4). Substituting these results into
Eqs.(20), (14), (19); then transforming the variables a1, a2 by 1

2ae
iφ, 1

2ae
−iφ

and simplifying, we obtain

ȧ = 0, φ̇ = w + 3εa2/(8w)− 15ε2a4/(256w3) + O(ε3);(24)

u1 = a3 cos 3φ/32, u2 = a5(21 cos 3φ− cos 5φ)/1024.(25)

All the results of Eqs.(24)-(25) are similar to those obtained by the original
KBM method (see [10] for details).

4. A fourth-order equation

In this subsection, we solve the following fourth order equation utilizing
formula Eq.(5).

(26) (D2 + 2k1D + w2
1)(D

2 + 2k2D + w2
2)x = ε x3.

For this equation

f = (a1 + · · ·+ a4 + ε u1 + ε2 · · · )3

= 3a21a2 + 6a1a3a4 + 3a1a
2
2 + 6a2a3a4 + 3a23a4 + 6a1a2a3

+ 3a3a
3
4 + 6a1a2a4 + a31 + a32

+ 3(a21a3 + a22a4 + a21a4 + a22a3 + a1a
2
3 + a2a

2
4 + a1a

2
4 + a2a

2
3)

+ a33 + a34 +O(ε).

Now substituting this value of f into Eq.(5), we obtain
(27)

(D0 − λ3)(D0 − λ4)(D0 − λ2)(D1a1)

+ (D0 − λ3)(D0 − λ4)(D0 − λ1)(D1a2)

+ (D0 − λ1)(D0 − λ2)(D0 − λ4)(D1a3)

+ (D0 − λ1)(D0 − λ2)(D0 − λ3)(D1a4)

+ (D0 − λ3)(D0 − λ4)(D0 − λ1)(D0 − λ2)u1

= 3a21a2 + 6a1a3a4 + 3a1a
2
2 + 6a2a3a4 + 3a23a4 + 6a1a2a3

+ 3a3a
3
4 + 6a1a2a4 + a31 + a32 + 3(a21a3 + a22a4 + · · ·+ a2a

2
3) + a33 + a34

(D0 − λ3)(D0 − λ4)(D0 − λ2)(D2a1)

+ (D0 − λ3)(D0 − λ4)(D0 − λ1)(D2a2)

+ (D0 − λ1)(D0 − λ2)(D0 − λ4)(D2a3)

+ (D0 − λ1)(D0 − λ2)(D0 − λ3)(D2a4)

+ (D0 − λ3)(D0 − λ4)(D0 − λ1)(D0 − λ2)u2

+ [D1{D2
0 − (λ2 + λ3 + λ4)D0 + λ2λ3 + λ3λ4 + λ4λ2}(28)

+D0D1(D0 − λ2 − λ3 − λ4) +D2
0D1](D1a1)
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+ [D1{D2
0 − (λ1 + λ3 + λ4)D0 + · · · ](D1a2)

+ [D1(D
3
0 + c1D

2
0 + c2D0 + c3)

+D0D1(D
2
0 + c1D0 + c2) +D2

0D1(D0 + c1) +D3
0D1]u1

= 3(a1 + a2 + a3 + a4)
2u1.

The functions related to the first approximation are found from Eq.(27)
(subject to the similar imposed conditions; see Subsection 3.1) as

(29)
D1a1 = L1a

2
1a2 + L2a1a3a4, D1a2 = L∗

1a1a
2
2 + L∗

2a2a3a4,
D1a3 = L3a

2
3a4 + L4a1a2a3, D1a4 = L∗

3a3a
3
4 + L∗

4a1a2a4,

and

(30)
u1 = C1a

3
1 + C∗

1a
3
2 + C2a

2
1a3 + C∗

2a
2
2a4 + C3a

2
1a4 + C∗

3a
2
2a3

+C4a1a
2
3 + C∗

4a2a
2
4 + C5a1a

2
4 + C∗

5a2a
2
3 + C6a

3
3 + C∗

6a
3
4,

where

L1 = 3(2λ1(2λ1 + λ2 − λ3)(2λ1 + λ2 − λ4))
−1,

L∗
1 = 3(2λ2(λ1 + 2λ2 − λ3)(λ1 + 2λ2 − λ4))

−1,

L2 = 6((λ1 + λ3)(λ1 + λ4)(λ1 + λ3 + λ4 − λ2))
−1,

L∗
2 = 6((λ2 + λ3)(λ2 + λ4)(λ2 + λ3 + λ4 − λ1))

−1,(31)

L3 = 3(2λ3(2λ3 + λ4 − λ1)(2λ3 + λ4 − λ2))
−1,

L∗
3 = 3(2λ4(λ3 + 2λ2 − λ1)(λ3 + 2λ4 − λ2))

−1,

L4 = 6((λ1 + λ4)(λ2 + λ4)(λ1 + λ2 + λ4 − λ3)),

L∗
4 = 6((λ1 + λ3)(λ2 + λ3)(λ1 + λ2 + λ3 − λ4))

−1,

and

C1 = (2λ1(3λ1 − λ2)(3λ1 − λ3)(3λ1 − λ4))
−1,

C∗
1 = (2λ2(3λ2 − λ1)(3λ2 − λ3)(3λ2 − λ4))

−1,

C2 = 3(2λ1(λ1 + λ3)(2λ1 + λ3 − λ2)(2λ1 + λ3 − λ4))
−1,

C∗
2 = 3(2λ2(2λ2 + λ4 − λ1)(λ2 + λ4)(2λ2 + λ4 − λ3))

−1,

C3 = 3(2λ1(λ1 + λ4)(2λ1 + λ4 − λ2)(2λ1 + λ4 − λ3))
−1,

C∗
3 = 3(2λ2(2λ2 + λ3 − λ1)(λ2 + λ3)(2λ2 + λ3 − λ4))

−1,(32)

C4 = 3(2λ3(λ1 + 2λ3 − λ2)(λ1 + λ3)(λ1 + 2λ3 − λ4))
−1,

C∗
4 = 3(2λ4(λ2 + 2λ4 − λ1)(λ2 + 2λ4 − λ3)(λ2 + λ4))

−1,

C5 = 3(2λ4(λ1 + 2λ4 − λ2)(λ1 + 2λ4 − λ3)(λ1 + λ4))
−1,

C∗
5 = 3(2λ3(λ2 + 2λ3 − λ1)(λ2 + λ3)(λ2 + 2λ3 − λ4))

−1,

C6 = (2λ3(3λ3 − λ1)(3λ3 − λ2)(3λ3 − λ4))
−1,

C∗
6 = (2λ4(3λ4 − λ1)(3λ4 − λ2)(3λ4 − λ3))

−1.
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To find the second approximation, we have to calculate

[D1{D2
0 − (λ2 + λ3 + λ4)D0 + λ2λ3 + λ3λ4 + λ4λ2}

(33)

+D0D1(D0 − λ2 − λ3 − λ4) +D2
0D1](L1a

2
1a2 + L2a1a3a4)

= (19λ21 + 18λ1λ2 + 4λ22 − 5λ1λ3 − 5λ1λ4 − 2λ2λ3 − 2λ2λ4 + λ3λ4)

× L1(2L1 + L∗
1)a

3
1a

2
2

+ (12λ21 + 8λ1λ2 + λ22 + 2λ1λ3 + 2λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)

× L1(2L2 + L∗
2)a

2
1a2a3a4

+ (7λ21 + 2λ1λ2 + 6λ1λ3 + 6λ1λ4 + λ2λ3 + λ2λ4 + λ23 + λ24 + 3λ3λ4)

× L2(L1 + L3 + L∗
3)a

2
1a2a3a4

+ (3λ21 − 2λ1λ2 + 7λ1λ3 + 7λ1λ4 − 2λ2λ3 − 2λ2λ4 + 4λ23 + 4λ24 + 9λ3λ4)

× L2(L2 + L4 + L∗
4)a

2
1a2a3a4,

3(a1 + a2 + a3 + a4)
2u1(34)

= C1a
3
1a

2
2 + 2(C2 + C3)a

2
1a2a3a4 + (C4 + C5)a1a

2
3a

2
4

+ C∗
1a

2
1a

3
2 + 2(C∗

2 + C∗
3 )a1a

2
2a3a4 + (C∗

4 + C∗
5 )a2a

2
3a

2
4

+ (C2 + C∗
3 )a

2
1a

2
2a3 + 2(C4 + C∗

5 )a1a2a
2
3a4 + C6a

3
3a

2
4 + · · · .

Herein we find only one equation for D2a1 as

(D0 − λ2)(D0 − λ3)(D0 − λ4)(D2a1)

(35)

= [−(19λ21 + 18λ1λ2 + 4λ22 − 5λ1λ3 − 5λ1λ4 − 2λ2λ3 − 2λ2λ4 + λ3λ4)

× L1(2L1 + L∗
1) + 3C1]a

3
1a

2
2

+ [−(12λ21 + 8λ1λ2 + λ22 + 2λ1λ3 + 2λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)

L1(2L2 + L∗
2)

− (7λ21 + 2λ1λ2 + 6λ1λ3 + 6λ1λ4 + λ2λ3 + λ2λ4 + λ23 + λ24 + 3λ3λ4)

× L2(L1 + L3 + L∗
3) + 6(C2 + C3)]a

2
1a2a3a4

+ [−(3λ21 − 2λ1λ2 + 7λ1λ3 + 7λ1λ4 − 2λ2λ3 − 2λ2λ4 + 4λ23 + 4λ24 + 9λ3λ4)

× L2(L2 + L4 + L∗
4) + 3(C4 + C5)]a

2
1a2a3a4.

Solving Eq.(35), we obtain

(36) D2a1 = p1a
3
1a

2
2 + p2a

2
1a2a3a4 + p3a1a

2
3a

2
4,

where

p1 = [−(19λ21 + 18λ1λ2 + 4λ22 − 5λ1λ3 − 5λ1λ4 − 2λ2λ3 − 2λ2λ4 + λ3λ4)

(37)
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× L1(2L1 + L∗
1) + 3C1]

× ((3λ1 + λ2)(3λ1 + 2λ2 − λ3)(3λ1 + 2λ2 − λ4))
−1,

p2 = [−(12λ21 + 8λ1λ2 + λ22 + 2λ1λ3 + 2λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)

× L1(2L2 + L∗
2)− (7λ21 + 2λ1λ2 + 6λ1λ3 + 6λ1λ4 + λ2λ3 + λ2λ4

+ λ23 + λ24 + 3λ3λ4)L2(L1 + L3 + L∗
3) + 6(C2 + C3)]

× ((2λ1 + λ2 + λ3)(2λ1 + λ2 + λ4)(2λ1 + λ3 + λ4))
−1,

p3 = [−(3λ21 − 2λ1λ2 + 7λ1λ3 + 7λ1λ4 − 2λ2λ3 − 2λ2λ4

+ 4λ23 + 4λ24 + 9λ3λ4)L2(L2 + L4 + L∗
4) + 3(C4 + C5)]

× ((λ1 − λ2 + 2λ3 + 2λ4)(λ1 + λ3 + 2λ4)(λ1 + 2λ3 + λ4))
−1.

It is a laborious task to separate the unknown coefficients in real and imag-
inary part; but not difficult to compute them when the eigen-values are spec-
ified. However, the calculation is very easy when all the eigen-values are real
or purely imaginary. Let us consider the later case, i.e., the un-damped case.
In this case k1 = k2 = 0 and λ1 = iw1, λ2 = −iw1, λ3 = iw2, λ4 = −iw2.
Therefore, we obtain the following results

(38)
2L1 = −2L∗

1 = L2 = −L∗
2 = 3i[w1(w

2
1 − w2

2)]
−1,

2L3 = −2L∗
3 = L4 = −L∗

4 = 3i[w2(w
2
2 − w2

1)]
−1,

(39)

C1 = C∗
1 = [8w2

1(9w
2
1 − w2

2)]
−1,

C2 = C∗
2 = 3[2w1(w1 + w2)

2(3w1 + w2)]
−1,

C3 = C∗
3 = 3[2w1(w1 − w2)

2(3w1 − w2)]
−1,

C4 = C∗
4 = 3[2w2(w2 + w1)

2(3w2 + w1)]
−1,

C5 = C∗
5 = 3[2w2(w2 − w1)

2(3w2 − w1)]
−1,

C6 = C∗
6 = [8w2

2(9w
2
2 − w2

1)]
−1

and

(40)

p1 = −3i(269w4
1 − 82w2

1w
2
2 + 5w4

2)[8w
3
1(w

2
1 − w2

2)
3(9w2

1 − w2
2)]

−1,

p2 = −9i(42w4
1 − 19w2

1w
2
2 + w4

2)[2w
3
1(w

2
1 − w2

2)
3(9w2

1 − w2
2)]

−1,

p3 = 9i(15w4
1 − 89w2

1w
2
2 + 18w4

2)[4w
3
1(w

2
1 − w2

2)
3(9w2

2 − w2
1)]

−1.

Now substituting the values of D0a1, D1a1, D2a1 into Da1 = ȧ1, utilizing
the results of Eqs.(38) and (40), transforming a1 = 1

2ae
iφ, a2 = 1

2ae
iφ, a3 =

1
2be

iψ, a4 = 1
2be

−iψ and then separating into real and imaginary parts, we
obtain

(41) ȧ = 0, φ̇ = w1 +
3ε(a2 + 2b2)

8w1(w2
1 − w2

2)
+ ε2(Q1a

4 +Q2a
2b2 +Q3b

4),
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where

(42)

Q1 = −3(269w4
1 − 82w2

1w
2
2 + 5w4

2)[128w
3
1(w

2
1 − w2

2)
3(9w2

1 − w2
2)]

−1,

Q2 = −9(42w4
1 − 19w2

1w
2
2 + w4

2)[32w
3
1(w

2
1 − w2

2)
3(9w2

1 − w2
2)]

−1,

Q3 = 9(15w4
1 − 89w2

1w
2
2 + 18w4

2)[64w
3
1(w

2
1 − w2

2)
3(9w2

2 − w2
1)]

−1.

It is interesting to note that we obtain ḃ, ψ̇ by replacing a by b, b by a, w1

by w2 and w2 by w1 in Eqs.(41)-(42). Therefore,

(43) ḃ = 0, ψ̇ = w2 +
3ε(2a2 + b2)

8w2(w2
2 − w2

1)
+ ε2(Q

/
3a

4 +Q
/
2a

2b2 +Q
/
1b

4),

where

(44)

Q
/
1 = −3(269w4

2 − 82w2
1w

2
2 + 5w4

1)[128w
3
2(w

2
2 − w2

1)
3(9w2

2 − w2
1)]

−1,

Q
/
2 = −9(42w4

2 − 19w2
1w

2
2 + w4

1)[32w
3
2(w

2
2 − w2

1)
3(9w2

2 − w2
1)]

−1,

Q
/
3 = 9(15w4

2 − 89w2
1w

2
2 + 18w4

1)[64w
3
2(w

2
2 − w2

1)
3(9w2

1 − w2
2)]

−1.

Substituting the values of C1, C
∗
1 , . . . , C

∗
6 from Eq.(39) into Eq.(30), we

obtain

(45)

u1 =
a3 cos 3φ

128w2
1(9w

2
1 − w2

2)
+

3a2b cos(2φ+ ψ)

32w1(w1 + w2)2(3w1 + w2)

+
3a2b cos(2φ− ψ)

32w1(w1 − w2)2(3w1 − w2)
+

3ab2 cos(φ+ 2ψ)

32w2(w2 + w1)2(3w2 + w1)

+
3ab2 cos(φ− 2ψ)

32w2(w2 − w1)2(3w2 − w1)
+

b3 cos 3ψ

128w2
2(9w

2
2 − w2

1)
.

In general, the variational equations of ȧ, φ̇ are

(46)

ȧ = − k1a+ ε[Re(L1)a
3 +Re(L2)ab

2)]/4

+ ε2[Re(p1)a
5 +Re(p2)a

3b2 +Re(p3)ab
4]/16,

φ̇ = w1 + ε[Im(L1)a
2 + Im(L2)b

2)]/4

+ ε2[Im(p1)a
4 + Im(p2)a

2b2 + Im(p3)b
4]/16,

and the variational equations of ḃ, ψ̇ can be similarly found by replacing a by
b, . . . , w2 by w1 and k2 by k1. Thus it is no need to calculate functions related
to ḃ, ψ̇.

5. Results and discussion

Most of the perturbation methods were originally formulated to investigate
periodic motion. Then small damping effect was discussed in few articles. The
main reason of negligence of studying strongly damped nonlinear problems
was the difficulty of formulation of the method. Moreover, the determination of
solution from the derived formula is a laborious task especially when the system
possesses more than the second derivative. Usually, a first approximate solution
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was found for the strong damping effect. Recently, Shamsul et al. [17] have
found the second approximate solution of a third-order nonlinear differential
equation with small damping utilizing the general Struble’s technique. It is
noted that the terms with ε of the variational equations of amplitude and
phase vanish while those of ε2 only contribute to the oscillating process. In
this article we have found a second approximation of a fourth-order nonlinear
differential equation with strong damping effect utilizing the MTS method.
The first approximate solution of the same problem was early investigated by
the modified KBM method [16]. We can find the same result utilizing the KBM
method or the Struble’s technique; but the determination of the solution is more
laborious. The first and second approximate solutions give desired results for
a short time interval and it slowly deviates from the numerical solution as t
is increased. On the contrary, the second approximate solution shows a good
agreement with the numerical solution even if t is large (see Figs. 1 and 2).
This statement is certainly true for the case of un-damped solution (see Figs.
3-4).

In this paper a set of new variables is considered which quickly communi-
cates among varies perturbation methods. The noted variables are complex for
the oscillatory or damped oscillatory systems and real for the non-oscillatory
systems. The complex form solution is being considered for simplification (see
[1, 6]), but the new technique is entirely different. The complex form solution
was early chosen (by several authors) including amplitude and phase variables,
which relates to the real form directly. On the contrary, the new complex form
solution is transformed to a usual form by a variable transformation (see [15] for
details). The set of new variables greatly speeds up all the noted perturbation
methods.

6. Conclusion

The MTS has been modified and applied to investigate certain nonlinear
problems possessing more than the second derivative. The first and second
approximate solutions are derived for the strong liner damming effects. More-
over, MTS method is compared to KBM method. Such a comparison study
is not new at all. Earlier the comparison study of these methods was limited
to a second-order nonlinear differential equation with a small damping effect.
In this paper these methods are again compared to one another choosing some
known problems possessing more than the second derivatives. Moreover, it
has been shown that the methods cover both oscillatory and non-oscillatory
processes.

Acknowledgement. The authors are grateful to honorable reviewer for his
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are also grateful to Mr. Sakhawat Hossain, Assistant Professor, Department of
English, Rajshahi University, for his assistance to improve the language.
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Appendix A

Let us consider Da1 = l1a
2
1a2 be the particular solution of Eq.(19). Since

D0a1 = λ1a1, D0a2 = λ2a2, we obtain (D0−λ2)(D1a1) = (D0−λ2)(l1a21a2) =
2λ1l1a

2
1a2. Substituting this value in to left hand side of Eq.(19), we obtain

2λ1l1a
2
1a2 = −3a21a2, or l1 = −3/(2λ1). Thus the value of l1 is found. In a

similar way the values of l∗1,. . . , l3, l
∗
3 as well as the solutions of u1, u2 can be

found.
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Figure 1. First approximate solution (here line) with corresponding
numerical solution (solid line) are plotted when damping coefficients k1 =

k2 = 0.01, frequencies ω1 = 1/
√
2, ω2 =

√
2, with initial conditions

[x(0) = 1.01053, ẋ(0) = −0.00923, ẍ(0) = −1.25985,
...
x (0) = 0.03274].
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Figure 2. Second approximate solution (here line) with corresponding
numerical solution (solid line) are plotted when damping coefficients k1 =

k2 = 0.01, frequencies ω1 = 1/
√
2, ω2 =

√
2, with initial conditions

[x(0) = 1.01053, ẋ(0) = −0.00965, ẍ(0) = −1.25979,
...
x (0) = 0.03389].
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Figure 3. First approximate solution (here line) with corresponding
numerical solution (solid line) are plotted when k1 = k2 = 0 frequencies

ω1 = 1/
√
2, ω2 =

√
2, with initial conditions [x(0) = 1.01054, ẋ(0) =

0, ẍ(0) = −1.25997,
...
x (0) = 0].
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Figure 4. Second approximate solution (here line) with corresponding

numerical solution (solid line) are plotted when k1 = k2 = 0, frequencies

ω1 = 1/
√
2, ω2 =

√
2, with initial conditions [x(0) = 1.01054, ẋ(0) =

0, ẍ(0) = −1.25991,
...
x (0) = 0].

References

[1] G. N. Bojadziev, Damped forced nonlinear vibrations of systems with delay, J. Sound
Vibration 46 (1976), 113–120.

[2] , Two variables expansion method applied to the study of damped non-linear
oscillations, Nonlinear Vibration Problems 21 (1981), 11–18.

[3] , Damped nonlinear oscillations modeled by a 3-dimensional differential system,
Acta Mech. 48 (1983), no. 3-4, 193–201.

[4] N. N. Bogoliubov and Yu. A. Mitropolskii, Asymptotic Methods in the Theory of Non-
linear Oscillations, Gordan and Breach, New York, 1961.



708 M. A. K. AZAD, M. S. ALAM, M. S. RAHMAN, AND B. S. SARKER

[5] A. Hassan, The KBM derivative expansion method is equivalent to the multiple-time-
scales method, J. Sound Vibration 200 (1997), no. 4, 433–440.

[6] B. Z. Kaplan, Use of complex variables for the solution of certain nonlinear systems, J.
Computer Methods in Applied Mechanics and Engineering 13 (1978), 281–291.

[7] N. N. Krylov and N. N. Bogoliubov, Introduction to Nonlinear Mechanics, Princeton
University Press, New Jersey, 1947.

[8] I. S. N. Murty, A unified Krylov-Bogoliubov method for solving second order nonlinear

systems, Int. J. Nonlinear Mech. 6 (1971), 45–53.
[9] I. S. N. Murty, B. L. Deekshatulu, and G. Krisna, On asymptotic method of Krylov-

Bogoliubov for overdamped nonlinear systems, J. Frank Inst. 288 (1969), 49–64.
[10] A. H. Nayfeh, Perturbation Methods, John Wiley & Sons, New York-London-Sydney,

1973.
[11] , Introduction to Perturbation Techniques, Wiley-Interscience [John Wiley &

Sons], New York, 1981.
[12] I. P. Popov, A generalization of the asymptotic method of N. N. Bogolyubov in the theory

of non-linear oscillations, Dokl. Akad. Nauk SSSR (N.S.) 111 (1956), 308–311.
[13] R. A. Rink, A procedure to obtain the initial amplitude and phase for the Krylov-

Bogoliubov method, J. Franklin Inst. 303 (1977), 59–65.
[14] M. Shamsul Alam, A unified Krylov-Bogoliubov-Mitropolskii method for solving n-order

nonlinear systems, J. Franklin Inst. 339 (2002), 239–248.
[15] , A unified Krylov-Bogoliubov-Mitropolskii method for solving n-th order nonlin-

ear systems with varying coefficients, J. Sound and Vibration 265 (2003), 987–1002.

[16] , A modified and compact form of Krylov-Bogoliubov-Mitropolskii unified KBM
method for solving an n-th order nonlinear differential equation, Int. J. Nonlinear Mech.
39 (2004), 1343–1357.

[17] M. Shamsul Alam, M. Abul Kalam Azad, and M. A. Hoque. A general Struble’s tech-

nique for solving an n-th order weakly nonlinear differential system with damping, Int.
J. Nonlinear Mech. 41 (2006), 905–918.

M. Abul Kalam Azad
Department of Mathematics
Rajshahi University of Engineering and Technology (RUET)

Kazla, Rajshahi 6204, Bangladesh
E-mail address: makazad1969@yahoo.com

M. Shamsul Alam
Department of Mathematics
Rajshahi University of Engineering and Technology (RUET)
Kazla, Rajshahi 6204, Bangladesh

E-mail address: msalam1964@yahoo.com

M. Saifur Rahman
Department of Mathematics

Rajshahi University of Engineering and Technology (RUET)
Kazla, Rajshahi 6204, Bangladesh
E-mail address: msr−math−1980@yahoo.com

Bimolendu Shekhar Sarker
Computer Center
Rajshahi University of Engineering and Technology (RUET)

Kazla, Rajshahi 6204, Bangladesh
E-mail address: bimolendu@yahoo.com


