• 제목/요약/키워드: Ordinary Differential Equations

검색결과 344건 처리시간 0.019초

Boussinesq방정식을 이용한 크노이드파의 Brags반사 해석 (Analysis of Brags Reflection of Cnoidal Waves with Boussinesq Equations)

  • 조용식;정재상;이종인
    • 한국해안해양공학회지
    • /
    • 제14권4호
    • /
    • pp.274-281
    • /
    • 2002
  • 본 연구에서는 Boussinesq 방정식을 이용하여 유도한 한 쌍의 상미분방정식을 이용하여, 수심이 완만히 변하는 일정 경사면의 정현파형 지형 및 복합정현파형 지형에서의 Bragg반사를 해석하였다. 입사파는 크노이드파를 사용하였으며, 입사파의 분산성과 해저지형의 형태가 반사에 미치는 영향에 관하여 검토하였다. 해석결과에 의하면 정현파형 지형의 경우에는 입사파 분산성의 크기와 정현파형 지형의 진폭이 증가할수록 반사율이 증가하였으며, 복합정현파형 지형의 경우에는 지형의 진폭이 증가할수록, 해저지형을 구성하는 두 개의 정현성분 파수의 차가 감소할수록 반사율의 크기는 증가하였다.

Effects of Noise on a Model of Oscillatory Chemical Reaction

  • Basavaraja, C.;Bagchi, Biman;Park, Do-Young;Choi, Young-Min;Park, Hyun-Tae;Choe, Sang-Joon;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권10호
    • /
    • pp.1525-1530
    • /
    • 2006
  • A simple oscillating reaction model subject to additive Gaussian white noise is investigated as the model is located in the dynamic region of oscillations. The model is composed of three ordinary differential equations representing the time evolutions of X, Y, and Z, respectively. Initially, a uniform random noise is separately added to the three equations to study the effect of noise on the oscillatory cycle of X, Y, and Z. For a given value of noise intensity, the amplitude of oscillation increases monotonically with time. Furthermore, the noise is added to any one of the three equations to study the impact of noise on one species on the bifurcation behavior of the other.

경사지형에서 파군에 의해 생성된 장파의 Bragg 반사 (Bragg Reflection of Long Waves Generated by Short Wave Groups on a Sloping Beach)

  • 정재상;조용식
    • 한국수자원학회논문집
    • /
    • 제36권3호
    • /
    • pp.413-422
    • /
    • 2003
  • 본 연구에서는 Boussinesq 방정식을 이용하여 유도된 장파를 지배하는 한창의 상미분방정식을 이용하여, 완만히 변하는 일정경사면의 정현파형 지형에서의 Bragg 반사를 해석하였다. 입사파는 위상이 다른 두 단파의 중첩에 의해 생성된 파군을 사용하였다. Bragg 반사 조건에서 해저지형의 경사가 장파의 반사에 미치는 영향에 대하여 검토하였으며, 해저지형의 경사가 클수록 반사는 크게 나타났다. 이는 수심의 감소로 인해 비선형성이 증가하였으며, 이로 인한 파랑의 천수효과로 입사파의 파고가 상승하여, 반사 역시 크게 나타난 것으로 판단된다.

차가운 물에 잠겨있는 수직운동 벽면주위의 자연대류에 관한 안정성 (Hydrodynamic Stability of Buoyancy-induced Flows Adjacent to a Vertical Isothermal Surface in Cold Pure Water)

  • 황영규
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.630-643
    • /
    • 1991
  • The hydrodynamic stability equations are formulated for buoyancy-induced flows adjacent to a vertical, planar, isothermal surface in cold pure water. The resulting stability equations, when reduced to ordinary differential equation by a similarity transformation, constitute a two-point boundary-value(eigenvalue) problem, which was numerically solved for various values of the density extremum parameter R=( $T_{m}$ - $T_.inf./) / ( $T_{o}$ - $T_.inf./). These stability equations have been solved using a computer code designed to accurately solve two-point boundary-value problems. The present numerical study includes neutral stability results for the region of the flows corresponding to 0.0.leq. R. leq.0.15, where the outside buoyancy force reversals arise. The results show that a small amount of outside buoyancy force reversal causes the critical Grashof number $G^*/ to increase significantly. A further increase of the outside buoyancy force reversal causes the critical Grashof number to decrease. But the dimensionless frequency parameter $B^*/ at $G^*/ is systematically decreased. When the stability results of the present work are compared to the experimental data, the numerical results agree in a qualitative way with the experimental data.erimental data.

Nonlinear free vibration of heated corrugated annular plates with a centric rigid mass

  • Wang, Yong-Gang;Li, Dan;Feng, Ze-Jun
    • Structural Engineering and Mechanics
    • /
    • 제34권4호
    • /
    • pp.491-505
    • /
    • 2010
  • A computational analysis of the nonlinear free vibration of corrugated annular plates with shallow sinusoidal corrugations under uniformly static ambient temperature is examined. The governing equations based on Hamilton's principle and nonlinear bending theory of thin shallow shell are established for a corrugated plate with a concentric rigid mass at the center and rotational springs at the outer edges. A simple harmonic function in time is assumed and the time variable is eliminated from partial differential governing equations using the Kantorovich averaging procedure. The resulting ordinary equations, which form a nonlinear two-point boundary value problem in spatial variable, are then solved numerically by shooting method, and the temperature-dependent characteristic relations of frequency vs. amplitude for nonlinear vibration of heated corrugated annular plates are obtained. Several numerical results are presented in both tabular and graphical forms, which demonstrate the accuracy of present method and illustrate the amplitude frequency dependence for the plate under such parameters as ambient temperature, plate geometry, rigid mass and elastic constrain.

Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells

  • Ahmadi, Isa;Najafi, Mahsa
    • Steel and Composite Structures
    • /
    • 제22권5호
    • /
    • pp.1193-1214
    • /
    • 2016
  • In this paper, the 3D stress state and inter-laminar stresses in a rotating thin laminated cylinder shell are studied. The thickness of the cylinder is supposed to be thin and it is made of laminated composite material and can have general layer stacking. The governing equations of the cylindrical shell are obtained by employing the Layerwise theory (LWT). The effect of rotation is considered as rotational body force which is induced due to the rotation of the cylinder about its axis. The Layerwise theory (LWT), is used to discrete the partial differential equations of the problem to ordinary ones, in terms of the displacements of the mathematical layers. By applying the Free boundary conditions the solution of the governing equations is completed and the stress state, the inter-laminar stresses, and the edge effect in the rotating cylindrical shells are investigated in the numerical results. To verify the results, LWT solution is compared with the results of the FEM solution and good agreements are achieved. The inter-laminar normal and shear stresses in rotating cylinder are studied and effects of layer stacking and angular velocity is investigated in the numerical results.

Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories

  • Rahmani, Omid;Asemani, S. Samane
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.175-187
    • /
    • 2020
  • The theories having been developed thus far account for higher-order variation of transverse shear strain through the depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. A shear correction factor, therefore, is not required. In this paper, the effect of surface on the axial buckling and free vibration of nanobeams is studied using various refined higher-order shear deformation beam theories. Furthermore, these theories have strong similarities with Euler-Bernoulli beam theory in aspects such as equations of motion, boundary conditions, and expressions of the resultant stress. The equations of motion and boundary conditions were derived from Hamilton's principle. The resultant system of ordinary differential equations was solved analytically. The effects of the nanobeam length-to-thickness ratio, thickness, and modes on the buckling and free vibration of the nanobeams were also investigated. Finally, it was found that the buckling and free vibration behavior of a nanobeam is size-dependent and that surface effects and surface energy produce significant effects by increasing the ratio of surface area to bulk at nano-scale. The results indicated that surface effects influence the buckling and free vibration performance of nanobeams and that increasing the length-to-thickness increases the buckling and free vibration in various higher-order shear deformation beam theories. This study can assist in measuring the mechanical properties of nanobeams accurately and designing nanobeam-based devices and systems.

Runge-Kutta method for flow of dusty fluid along exponentially stretching cylinder

  • Iqbal, Waheed;Jalil, Mudassar;Khadimallah, Mohamed A.;Ayed, Hamdi;Naeem, Muhammad N.;Hussain, Muzamal;Bouzgarrou, Souhail Mohamed;Mahmoud, S.R.;Ghandourah, E.;Taj, Muhammad;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제36권5호
    • /
    • pp.603-615
    • /
    • 2020
  • The present manuscript focuses on the flow and heat transfer of the dusty fluid along exponentially stretching cylinder. Enormous attempts are made for fluid flow along cylinder but the study of fluid behavior along exponentially stretching cylinder is discussed lately. Using appropriate transformations, the governing partial differential equations are converted to non-dimensional ordinary differential equations. The transformed equations are solved numerically using Shooting technique with Runge-Kutta method. The influence of the physical parameters on the velocity and temperature profiles as well as the skin fraction coefficient and the local Nusselt number are examined in detail. The essential observations are as the fluid velocity decreases but temperature grows with rise in particle interaction parameter, and both the fluid velocity and temperature fall with increase in mass concentration parameter, Reynold number, Particle interaction parameter for temperature and the Prandtl number.

Theoretical fabrication of Williamson nanoliquid over a stretchable surface

  • Sharif, Humaira;Hussain, Muzamal;Khadimallah, Mohamed Amine;Ayed, Hamdi;Taj, Muhammad;Bhutto, Javed Khan;Mahmoud, S.R.;Iqbal, Zafer;Ahmad, Shabbir;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • 제14권2호
    • /
    • pp.103-113
    • /
    • 2022
  • On the basis of fabrication, the utilization of nano material in numerous industrial and technological system, obtained the utmost significance in current decade. Therefore, the current investigation presents a theoretical disposition regarding the flow of electric conducting Williamson nanoliquid over a stretchable surface in the presence of the motile microorganism. The impact of thermal radiation and magnetic parameter are incorporated in the energy equation. The concentration field is modified by adding the influence of chemical reaction. Moreover, the splendid features of nanofluid are displayed by utilizing the thermophoresis and Brownian motion aspects. Compatible similarity transformation is imposed on the equations governing the problem to derive the dimensionless ordinary differential equations. The Homotopy analysis method has been implemented to find the analytic solution of the obtained differential equations. The implications of specific parameters on profiles of velocity, temperature, concentration and motile microorganism density are investigated graphically. Moreover, coefficient of skin friction, Nusselt number, Sherwood number and density of motile number are clarified in tabular forms. It is revealed that thermal radiation, thermophoresis and Brownian motion parameters are very effective for improvement of heat transfer. The reported investigation can be used in improving the heat transfer appliances and systems of solar energy.

내부공진을 가진 보의 비선형 강제진동해석 (Nonlinear Analysis of a Forced Beam with Internal Resonances)

  • 이원경;소강영
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1897-1907
    • /
    • 1991
  • 본 연구에서는 세 모드 사이의 내부공진을 고려하여 강제진동 중인 보의 비선 형 해석을 다루고자 한다. 이 문제에 관심을 갖게 된 동기는 "연속계의 비선형해석 에서 더 많은 모드를 포함시키면 어떤 결과를 낳게 될 것인가\ulcorner" 라는 질문에서 생겨난 것이다.