Browse > Article
http://dx.doi.org/10.12989/sem.2020.74.2.175

Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories  

Rahmani, Omid (Structures and New Advanced Materials Laboratory Department of Mechanical Engineering, University of Zanjan)
Asemani, S. Samane (Department of Mechanical Engineering, University of Tarbiat Modares)
Publication Information
Structural Engineering and Mechanics / v.74, no.2, 2020 , pp. 175-187 More about this Journal
Abstract
The theories having been developed thus far account for higher-order variation of transverse shear strain through the depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. A shear correction factor, therefore, is not required. In this paper, the effect of surface on the axial buckling and free vibration of nanobeams is studied using various refined higher-order shear deformation beam theories. Furthermore, these theories have strong similarities with Euler-Bernoulli beam theory in aspects such as equations of motion, boundary conditions, and expressions of the resultant stress. The equations of motion and boundary conditions were derived from Hamilton's principle. The resultant system of ordinary differential equations was solved analytically. The effects of the nanobeam length-to-thickness ratio, thickness, and modes on the buckling and free vibration of the nanobeams were also investigated. Finally, it was found that the buckling and free vibration behavior of a nanobeam is size-dependent and that surface effects and surface energy produce significant effects by increasing the ratio of surface area to bulk at nano-scale. The results indicated that surface effects influence the buckling and free vibration performance of nanobeams and that increasing the length-to-thickness increases the buckling and free vibration in various higher-order shear deformation beam theories. This study can assist in measuring the mechanical properties of nanobeams accurately and designing nanobeam-based devices and systems.
Keywords
higher-order shear; surface effect; elastic medium; axial bulking; analytical modeling;
Citations & Related Records
Times Cited By KSCI : 23  (Citation Analysis)
연도 인용수 순위
1 Tounsi, A., Houari, M. S. A. and Benyoucef, S. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009.   DOI
2 Touratier, M. (1991), "An efficient standard plate theory", J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.   DOI
3 Trinh, L. C., Nguyen, H. X., Vo, T. P. and Nguyen, T. K. (2016), "Size-dependent behaviour of functionally graded microbeams using various shear deformation theories based on the modified couple stress theory", Compos. Struct., 154, 556-572. https://doi.org/10.1016/j.compstruct.2016.07.033.   DOI
4 Haiss, W. (2001), "Surface stress of clean and adsorbate-covered solids", Reports on Progress in Physics, 64(5), 591. https://doi.org/10.1088/0034-4885/64/5/201.   DOI
5 He, L.H., Lim, C.W. and Wu, B.S. (2004), "A continuum model for size-dependent deformation of elastic films of nano-scale thickness", J. Solids Struct., 41(3-4), 847-857. https://doi.org/10.1016/j.ijsolstr.2003.10.001.   DOI
6 Trinh, L. C., Vo, T. P., Thai, H. T. and Mantari, J. L. (2017), "Size-dependent behaviour of functionally graded sandwich microplates under mechanical and thermal loads", Compos. Part B Eng., 124, 218-241. https://doi.org/10.1016/j.compositesb.2017.05.042.   DOI
7 Trinh, L. C., Vo, T. P., Thai, H. T. and Nguyen, T. K. (2018), "Size-dependent vibration of bi-directional functionally graded microbeams with arbitrary boundary conditions", Compos. Part B Eng., 134, 225-245. https://doi.org/10.1016/j.compositesb.2017.09.054.   DOI
8 Vlasov, V.Z. (1966), "Beams, plates and shells on elastic foundations", Israel Program for Scientific Translations, Jerusalem.
9 Wang, B., Zhao, J. and Zhou, S. (2010), "A micro scale Timoshenko beam model based on strain gradient elasticity theory", European J. Mech. A/Solids, 29(4), 591-599. https://doi.org/10.1016/j.euromechsol.2009.12.005.   DOI
10 Wang, G. F. and Feng, X. Q. (2009), "Surface effects on buckling of nanowires under uniaxial compression", Appl. Phys. Lett., 94(14), 141913. https://doi.org/10.1063/1.3117505.   DOI
11 Belabed, Z., Houari, M. S. A., Tounsi, A., Mahmoud, S. R. and Beg, O. A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057.   DOI
12 Beldjelili, Y., Tounsi, A. and Mahmoud, S. R. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.   DOI
13 Belkorissat, I., Houari, M. S. A., Tounsi, A., Bedia, E. A. and Mahmoud, S. R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063.   DOI
14 Bennoun, M., Houari, M. S. A. and Tounsi, A. (2016), "A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088.   DOI
15 Bhimaraddi, A. and Chandrashekhara, K. (1993), "Observations on higher-order beam theory", J. Aerosp. Eng., 6(4), 408-413. https://doi.org/10.1061/(ASCE)0893-1321(1993)6:4(408).   DOI
16 Chaht, F. L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O. A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.   DOI
17 Yahia, S. A., Atmane, H. A., Houari, M. S. A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143.   DOI
18 Zemri, A., Houari, M. S. A., Bousahla, A. A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693   DOI
19 Cowper, G.R. (1966), "The shear coefficient in Timoshenko's beam theory", Appl. Mech., ASME, 33(2), 335-340, 1966. https://doi.org/10.1115/1.3625046.   DOI
20 Bousahla, A. A., Benyoucef, S., Tounsi, A. and Mahmoud, S. R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313.   DOI
21 Cammarata, R.C. and Sieradzki, K. (1994), "Surface and interface stresses", Annual Rev. Mater. Sci., 24(1), 215-234. https://doi.org/10.1146/annurev.pc.45.100194.001045.   DOI
22 Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sand wich plates with various boundary conditions", Steel Compos. Struct., 25, 693-704. https://doi.org/10.12989/scs.2017.25.6.693.   DOI
23 Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.   DOI
24 Ahouel, M., Houari, M. S. A., Bedia, E. A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963.   DOI
25 Al-Basyouni, K. S., Tounsi, A. and Mahmoud, S. R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070.   DOI
26 Challamel, N. (2011), "Higher-order shear beam theories and enriched continuum", Mech. Res. Commun., 38(5), 388-392. https://doi.org/10.1016/j.mechrescom.2011.05.004.   DOI
27 Rao, S. R. and Ganesan, N. (1995), "Dynamic response of tapered composite beams using higher order shear deformation theory", J. Sound Vib., 187(5), 737-756. https://doi.org/10.1006/jsvi.1995.0560.   DOI
28 Reddy, J. N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.   DOI
29 Reddy, J. N. (2002), Energy principles and variational methods in applied mechanics, John Wiley & Sons., NJ, U.S.A.
30 Rehfield, L.W. and Murthy, P.L.N. (1982), "Toward a new engineering theory of bending- Fundamentals", AIAA J., 20(5), 693-699. https://doi.org/10.2514/3.7938.   DOI
31 Saidi, H., Tounsi, A. and Bousahla, A.A. (2016), "A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations", Geomech. Eng., 11(2), 289-307. https://doi.org/10.12989/gae.2016.11.2.289.   DOI
32 Sharma, P., Ganti, S. and Bhate, N. (2003), "Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities", Appl. Phys. Lett., 82(4), 535-537. https://doi.org/10.1063/1.1539929.   DOI
33 Shenoy, V. B. (2005), "Atomistic calculations of elastic properties of metallic fcc crystal surfaces", Phys. Rev. B, 71(9), 094104. https://doi.org/10.1103/PhysRevB.71.094104.   DOI
34 Soldatos, K. P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mechanica, 94(3), 195-220. https://doi.org/10.1007/BF01176650.   DOI
35 Matsunaga, H. (1996), "Free vibration and stability of thin elastic beams subjected to axial forces", J. Sound Vib., 191(5), 917-933. https://doi.org/10.1006/jsvi.1996.0163.   DOI
36 Matsunaga, H. (1999), "Vibration and buckling of deep beam-columns on two-parameter elastic foundations", J. Sound Vib., 228(2), 359-376. https://doi.org/10.1006/jsvi.1999.2415.   DOI
37 Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A. A. and Mahmoud, S. R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/ 10.12989/scs.2017.25.2.157.   DOI
38 Bickford. W.B. (1982), "A consistent higher order beam theory", Dev. Theoretical Appl. Mech., SECTAM, 11, 137-150, 1982. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL83X0184967.
39 Bouafia, K., Kaci, A., Houari, M. S. A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115.   DOI
40 Bouderba, B., Houari, M. S. A., Tounsi, A. and Mahmoud, S. R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397.   DOI
41 Boukhari, A., Atmane, H. A., Tounsi, A., Adda, B. and Mahmoud, S. R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837.   DOI
42 Bounouara, F., Benrahou, K. H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227.   DOI
43 Meziane, M. A. A., Abdelaziz, H. H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandwich Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852.   DOI
44 Wang, G. F. and Feng, X. Q. (2009), "Timoshenko beam model for buckling and vibration of nanowires with surface effects", J. Physics D Appl. Physics, 42(15), 155411. https://doi.org/10.1186/1556-276X-7-201.   DOI
45 Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11(3), 139.   DOI
46 Shenoy, V. B. (2002), "Size-dependent rigidities of nanosized torsional elements", J. Solids Struct., 39(15), 4039-4052. https://doi.org/10.1016/S0020-7683(02)00261-5.   DOI
47 Murty, K. (1984), "Toward a consistent beam theory", AIAA J., 22(6), 811-816. https://doi.org/10.2514/3.8685.   DOI
48 Bourada, M., Kaci, A., Houari, M. S. A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409.   DOI
49 Stein, M. (1989), "Vibration of beams and plate strips with three-dimensional flexibility", J. Appl. Mech., 56(1), 228-231. https://doi.org/10.1115/1.3176054.   DOI
50 Baluch, M. H., Azad, A. K., & Khidir, M. A. (1984), "Technical theory of beams with normal strain", J. Eng. Mech., 110(8), 1233-1237. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:8(1233).   DOI
51 Nguyen, N.T., Hui, D., Lee, J. and Nguyen-Xuan, H. (2015), "An efficient computational approach for size-dependent analysis of functionally graded nanoplates", Comput. Methods Appl. Mech. Eng., 297, 191-218. https://doi.org/10.1016/j.cma.2015.07.021.   DOI
52 Nguyen, N.T., Kim, N.I. and Lee, J. (2014), "Analytical solutions for bending of transversely or axially FG nonlocal beams", Steel Compos. Struct., 17(5), 641-665. https://doi.org/10.12989/scs.2014.17.5.641.   DOI
53 Hebali, H., Tounsi, A., Houari, M. S. A., Bessaim, A. and Bedia, E. A. A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665.   DOI
54 Khdeir, A. A. and Reddy, J. N. (1997), "An exact solution for the bending of thin and thick cross-ply laminated beams", Compos. Struct., 37(2), 195-203. https://doi.org/10.1016/S0263-8223(97)80012-8.   DOI
55 Levinson, M. (1981), "Further results of a new beam theory", J. Sound Vib., 77(3), 440-444. https://doi.org/10.1016/S0022-460X(81)80180-0.   DOI
56 Matsunaga, H. (1996), "Buckling instabilities of thick elastic beams subjected to axial stresses", Comput. Struct., 59(5), 859-868. https://doi.org/10.1016/0045-7949(95)00306-1.   DOI
57 Dingreville, R., Qu, J. and Cherkaoui, M. (2005), "Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films", J. Mech. Phys. Solids, 53(8), 1827-1854. https://doi.org/10.1016/j.jmps.2005.02.012.   DOI
58 Subramanian, P. (2006), "Dynamic analysis of laminated composite beams using higher order theories and finite elements", Compos. Struct., 73(3), 342-353. https://doi.org/10.1016/j.compstruct.2005.02.002.   DOI
59 Sun, C. Q., Tay, B. K., Zeng, X. T., Li, S., Chen, T. P., Zhou, J. I., Bai, H.L. and Jiang, E. Y. (2002), "Bond-order-bond-length- bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid", J. Phys. Condensed Matt., 14(34), 7781. https://doi.org/10.1088/0953-8984/14/34/301.   DOI
60 Tebboune, W., Benrahou, K. H., Houari, M. S. A. and Tounsi, A. (2015), "Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory", Steel Compos. Struct., 18(2), 443-465. https://doi.org/10.12989/scs.2015.18.2.443.   DOI
61 Thai, H. T. and Vo, T. P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014.   DOI
62 Heyliger, P. R. and Reddy, J. N. (1988), "A higher order beam finite element for bending and vibration problems", J. Sound Vib., 126(2), 309-326. https://doi.org/10.1016/0022-460X(88)90244-1.   DOI
63 Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257.   DOI
64 Lu, Y., Ganesan, Y. and Lou, J. (2010), "A multi-step method for in situ mechanical characterization of 1-D nanostructures using a novel micromechanical device", Experimental Mech., 50(1), 47-54. https://doi.org/10.1007/s11340-009-9222-0   DOI
65 Kant, T. and Gupta, A. (1988), "A finite element model for a higher-order shear-deformable beam theory", J. Sound Vib., 125(2), 193-202. https://doi.org/10.1016/0022-460X(88)90278-7.   DOI
66 Karama, M., Afaq, K. S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structure model with transverse shear stress continuity", J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.   DOI
67 Eisenberger, M. (2003), "An exact high order beam element", Comput. Struct., 81(3), 147-152. https://doi.org/10.1016/S0045-7949(02)00438-8.   DOI
68 El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.   DOI
69 Ghugal, Y. M. and Sharma, R. (2009), "A hyperbolic shear deformation theory for flexure and vibration of thick isotropic beams", J. Comput. Methods, 6(04), 585-604. https://doi.org/10.1142/S0219876209002017.   DOI
70 Ghugal, Y. M. and Sharma, R. (2011), "A refined shear deformation theory for flexure of thick beams", Latin American J. Solids Struct., 8(2), 183-195. https://doi.org/10.1590/S1679-78252011000200005.   DOI
71 Gibbs, J. W. (1906). The Scientific Papers of J. Willard Gibbs (Vol. 1), Longmans, Green and Company., Harlow, United Kingdom.
72 Gurtin, M. E. and Murdoch, A. I. (1975), "A continuum theory of elastic material surfaces", Arch. Rational Mech. Anal., 57(4), 291-323. https://doi.org/10.1007/BF00261375.   DOI
73 Thai, S., Thai, H. T., Vo, T. P. and Patel, V. I. (2017), "Size-dependant behaviour of functionally graded microplates based on the modified strain gradient elasticity theory and isogeometric analysis", Comput. Struct., 190, 219-241. https://doi.org/10.1016/j.compstruc.2017.05.014.   DOI
74 Thai, S., Thai, H. T., Vo, T. P. and Reddy, J. N. (2017), "Post-buckling of functionally graded microplates under mechanical and thermal loads using isogeomertic analysis", Eng. Struct., 150, 905-917. https://doi.org/10.1016/j.engstruct.2017.07.073.   DOI
75 Timoshenko, S. P. (1921), "LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars", The London, Edinburgh Dublin Philosophical Mag. J. Sci., 41(245), 744-746. https://doi.org/10.1080/14786442108636264.   DOI