• 제목/요약/키워드: Oral Bacteria

검색결과 614건 처리시간 0.024초

Two Sjogren syndrome-associated oral bacteria, Prevotella melaninogenica and Rothia mucilaginosa, induce the upregulation of major histocompatibility complex class I and hypoxia-associated cell death, respectively, in human salivary gland cells

  • Lee, Jaewon;Jeon, Sumin;Choi, Youngnim
    • International Journal of Oral Biology
    • /
    • 제46권4호
    • /
    • pp.190-199
    • /
    • 2021
  • Despite evidence that bacteria-sensing Toll-like receptors (TLRs) are activated in salivary gland tissues of Sjogren syndrome (SS) patients, the role of oral bacteria in SS etiopathogenesis is unclear. We previously reported that two SS-associated oral bacteria, Prevotella melaninogenica (Pm) and Rothia mucilagenosa (Rm), oppositely regulate the expression of major histocompatibility complex class I (MHC I) in human salivary gland (HSG) cells. Here, we elucidated the mechanisms underlying the differential regulation of MHC I expression by these bacteria. The ability of Pm and Rm to activate TLR2, TLR4, and TLR9 was examined using TLR reporter cells. HSG cells were stimulated by the TLR ligands, Pm, and Rm. The levels of MHC I expression, bacterial invasion, and viability of HSG cells were examined by flow cytometry. The hypoxic status of HSG cells was examined using Hypoxia Green. HSG cells upregulated MHC I expression in response to TLR2, TLR4, and TLR9 activation. Both Pm and Rm activated TLR2 and TLR9 but not TLR4. Rm-induced downregulation of MHC I strongly correlated with bacterial invasion and cell death. Rm-induced cell death was not rescued by inhibitors of the diverse cell death pathways but was associated with hypoxia. In conclusion, Pm upregulated MHC I likely through TLR2 and TLR9 activation, while Rm-induced hypoxia-associated cell death and the downregulation of MHC I, despite its ability to activate TLR2 and TLR9. These findings may provide new insight into how oral dysbiosis can contribute to salivary gland tissue damage in SS.

차 카테킨 EGCG (Epigallocatechin Gallate)의 구강세균에 대한 살균효과 (Effect of Tea Catechin, EGCG (Epigallocatechin Gallate) on Killing of Oral Bacteria)

  • 유미옥;천재우;오계헌
    • 미생물학회지
    • /
    • 제40권4호
    • /
    • pp.364-366
    • /
    • 2004
  • 본 연구는 차 카테킨인 EGCG (epigallocatechin gallate)에 의한 구강세균의 살균효과를 조사하기 위하여 수행되었다. 초기 세포밀도 $10^{7}$ cell/ml의 대상 세균에 대한 항세균 활성은 EGCG 1ml당 5mg에서 조사하였다. 선택 또는 복합배지상에서 집락생성단위(colony-forming unit, CFU)에 근거하여 EGCG의 항세균 활성은 농도에 비례하는 것을 확인하였다. Streptococcus mutans와 Streptococcus sobrinus는 5mg/ml의 EGCG에서 8시간 이내에 완전히 살균되었다. Lactobacillus acidophilus와 Lactobacillus plantarum도 동일한 조건에서 각각 2시간과 4시간 이내에 살균되었다. 2.5 mg/ml의 EGCG로 처리한 사람의 타액에서 유래하는 총 구강세균의 생존율을 BHI 고체배지상에서 조사하였으며, 총 구강세균은 10시간 이내에 완전히 살균되었다. MS 고체배지상에서 S. mitis and S. salivarius의 집락은 감소되었으며 배양 12시간 이내에서는 집락은 관찰되지 않았다. 그 결과, EGCG는 입냄새와 치석의 원인이 되는 구강세균을 살균시키고 충치를 예방하는 자연적이며 효과적인 물질임이 입증되었다.

Trends in the rapid detection of infective oral diseases

  • Ran-Yi Jin;Han-gyoul Cho;Seung-Ho Ohk
    • International Journal of Oral Biology
    • /
    • 제48권2호
    • /
    • pp.9-18
    • /
    • 2023
  • The rapid detection of bacteria in the oral cavity, its species identification, and bacterial count determination are important to diagnose oral diseases caused by pathogenic bacteria. The existing clinical microbial diagnosis methods are time-consuming as they involve observing patients' samples under a microscope or culturing and confirming bacteria using polymerase chain reaction (PCR) kits, making the process complex. Therefore, it is required to analyze the development status of substances and systems that can rapidly detect and analyze pathogenic microorganisms in the oral cavity. With research advancements, a close relationship between oral and systemic diseases has been identified, making it crucial to identify the changes in the oral cavity bacterial composition. Additionally, an early and accurate diagnosis is essential for better prognosis in periodontal disease. However, most periodontal disease-causing pathogens are anaerobic bacteria, which are difficult to identify using conventional bacterial culture methods. Further, the existing PCR method takes a long time to detect and involves complicated stages. Therefore, to address these challenges, the concept of point-of-care (PoC) has emerged, leading to the study and implementation of various chair-side test methods. This study aims to investigate the different PoC diagnostic methods introduced thus far for identifying pathogenic microorganisms in the oral cavity. These are classified into three categories: 1) microbiological tests, 2) microchemical tests, and 3) genetic tests. The microbiological tests are used to determine the presence or absence of representative causative bacteria of periodontal diseases, such as A. actinomycetemcomitans, P. gingivalis, P. intermedia, and T. denticola. However, the quantitative analysis remains impossible, and detecting pathogens other than the specific ones is challenging. The microchemical tests determine the activity of inflammation or disease by measuring the levels of biomarkers present in the oral cavity. Although this diagnostic method is based on increase in the specific biomarkers proportional to inflammation or disease progression in the oral cavity, its commercialization is limited due to low sensitivity and specificity. The genetic tests are based on the concept that differences in disease vulnerability and treatment response are caused by the patient's DNA predisposition. Specifically, the IL-1 gene is used in such tests. PoC diagnostic methods developed to date serve as supplementary diagnostic methods and tools for patient education, in addition to existing diagnostic methods, although they have limitations in diagnosing oral diseases alone. Research on various PoC test methods that can analyze and manage the oral cavity bacterial composition is expected to become more active, aligning with the shift from treatment-oriented to prevention-oriented approaches in healthcare.

Quantitative Analysis of Oral Pathogenic Bacteria according to Smoking Using Real-Time PCR

  • Jeon, Eun-Suk;Heo, Hyo-Jin;Ko, Hyo-Jin
    • 치위생과학회지
    • /
    • 제18권1호
    • /
    • pp.60-68
    • /
    • 2018
  • This study investigates the relationship between smoking and periodontal disease through quantitative analysis of intra-buccal oral pathogenic bacteria detected in smokers and aims to yield objective baseline data for applications in anti-smoking and dental health education programs. From April to May 2016, participants in an oral health management program within an intensive dental hygiene training course at Choonhae College of Health Sciences received an explanation of the study purposes and methods, after which male smokers aged 18~30 years agreed to participate voluntarily. Real-time polymerase chain reaction (PCR) analysis of oral pathogenic bacteria was performed after collecting gingival sulcus fluid samples from 67 smokers. The intra-buccal oral pathogenic bacteria distributions were analyzed based on the subjects' general characteristics, smoking behaviors, and oral care behaviors. The distribution results show that pathogens in the anterior teeth are affected (in this order) by age, toothbrush size, and smoking status; older people had fewer pathogens, those who used larger toothbrushes had more pathogens, and smokers had more pathogens, compared to non-smokers ($_{adj}R^2=19.1$). In the posterior teeth, pathogens were influenced (in this order) by smoking status, smoking duration, and the number of tooth brushings per day; smokers had more pathogens than non-smokers, and those who brushed their teeth more often had fewer pathogens ($_{adj}R^2=25.1$). The overall pathogen distribution was affected only by smoking status: smokers generally had more pathogens, compared to non-smokers. Therefore, it is necessary to provide information about the risk of periodontal disease due to smoking during anti-smoking or dental health education sessions; particularly, the use of smaller toothbrushes for anterior teeth and the need for smokers in their early twenties to quit smoking for dental health should be highly emphasized.

Xylitol이 구강세균의 부착에 미치는 영향에 관한 연구 (EFFECT OF XYLITOL ON BINDING OF ORAL BACTERIA TO SALIVA-COATED SURFACES)

  • 최혜진;최호영
    • Restorative Dentistry and Endodontics
    • /
    • 제22권1호
    • /
    • pp.170-180
    • /
    • 1997
  • Cariogenicity of the bacteria is attributed to their binding capacity to the teeth. Bacterial attachment to oral surfaces is an essential step for colonization and subsequently infection. Therefore, it is conceivable that caries prevention can be achieved fundamentally by inhibition of bacterial attachment. The rationale for caries prevention through the use of sugar substitutes or limited use of sugar has been revealed. Among many sugar substitutes, xylitol has been shown to exhibit the most profound cariostatic effect, inhibiting glucose metabolism and possibly binding of mutans streptococci. The purpose of this study was to examine the effect of xylitol on binding of different species of oral bacteria. The effect of xylitol on binding of [$^3H$]-labeled oral bacteria to hydroxyapatite coated with human saliva(SHA) as a model for the pellicle-coated tooth surfaces was investigated. The strains of oral bacteria used in this study were A. viscosus T14V, A. viscosus WVU627, P. gingivaiis 2561, P. gingivalis A7Al-28, S. gordonii G9B, S. gordonii Challis, S. sobrinus 6715, S. mutans UA101, S. mutans KPSK -2, S. mutans T8, and S. mutans UA130. The obtained results were as follows: 1. P. gingivalis A7 Al-28, S. mutans UA130, S. mutans T8 grown with xylitol showed greater binding to SHA than the organism grown without xylitol. Among these, S. mutans T8 showed the greatest rate of increase in its binding to SHA ; 8-fold increase in its binding with xylitol. 2. S. mutans KPSK -2 grown with xylitol showed 2 times lesser binding to SHA than the organism grown without xylitol. 3. Binding ability of the remaining strains grown with xylitol to SHA was almost same as that of the organisms grown without xylitol. The overall results suggest that use of xylitol in the oral cavity may affect the complex oral bacterial ecosystem.

  • PDF

Inhibitory Effect of Pentose on Biofilm Formation by Oral Bacteria

  • Lee, Young-Jong;Baek, Dong-Heon
    • International Journal of Oral Biology
    • /
    • 제35권4호
    • /
    • pp.203-207
    • /
    • 2010
  • A number of bacterial species coexist in oral cavities as a biofilm rather than a planktonic arrangement. By forming an oral biofilm with quorum sensing properties, microorganisms can develop a higher pathogenic potential and stronger resistance to the host immune system and antibiotics. Hence, the inhibition of biofilm formation has become a major research issue for the future prevention and treatment of oral diseases. In this study, we investigated the effects of pentose on biofilm formation and phenotypic changes using wild type oral bacteria obtained from healthy human saliva. D-ribose and D-arabinose were found to inhibit biofilm formation, but have no effects on the growth of each oral bacterium tested. Pentoses may thus be good candidate biofilm inhibitors without growth-inhibition activity and be employed for the future prevention or treatment of oral diseases.

피톤치드 처리 후 구강 내 잔존 S. thermophilus의 P. gingivalis에 대한 효과 (The Effect of S. thermophilus Isolated from Saliva Treated with Phytoncide on P. gingivalis)

  • 정성희;어규식;전양현;홍정표
    • Journal of Oral Medicine and Pain
    • /
    • 제34권1호
    • /
    • pp.23-37
    • /
    • 2009
  • 치주질환과 구취를 유발시키는 중요한 원인균인 P. gingivalis에 대한 피톤치드의 항균효과와 항균작용은 이미 연구되어 있으나, 정상인의 구강상주균에 대한 연구는 아직 희귀한 편이다. 이에 본 연구에서는 건강한 정상인의 타액에 편백 피톤치드를 첨가하였을 때 사멸되지 않고 생존하는 타액세균을 분리하여 구강 유해균과 함께 배양한 후 구강 유해균에 대한 생존 타액세균의 억제효과를 파악함으로써 향후 프로바이오틱으로 작용할 수 있는 구강상주균의 균종을 동정하여 다음과 같은 결론을 얻었다. 1. 정상인의 전타액에 1% 피톤치드를 적용하였을 때 잔존 생균수는 감소하는 경향을 보였다. 2. 피톤치드 적용 후 생존한 주 세균종은 S. thermophilus (53%)로 나타났다. 3. 피톤치드 적용 후 생존한 균을 P. gingivalis A7A1-28과 P. gingivalis W83에 교차배양한 결과 생존균의 대부분(72.5%) 이 P. gingivalis A7A1-28과 P. gingivalis W83의 성장을 억제하였다. 4. 생존 S. thermophilus의 85.8%, S. sanguinis는 75.8%가 P. gingivalis 를 억제하는 것으로 나타났다. 이상의 결과로 미루어, P. gingivalis 등 구강 내 유해균을 직접 억제할 수 있는 것으로 알려진 피톤치드로 처리할 경우 피톤치드에 생존하는 구강상주균이 P. gingivalis에 대해 부가적으로 억제작용을 할 수 있기 때문에 피톤치드의 사용은 치주질환을 예방하고, 그 결과 치주질환 및 구취환자의 구강 환경을 크게 개선할 수 있을 것으로 생각된다.

Identification of Bacterial Flora on Cellular Phones of Dentists

  • Kwon, Ye Won;Lee, Si Young
    • International Journal of Oral Biology
    • /
    • 제39권3호
    • /
    • pp.137-143
    • /
    • 2014
  • Dental professionals are repeatedly exposed to many microorganisms present in both blood and saliva. Thus, dental professionals are at a greater risk of acquiring and spreading infections, and the implementation of infections control guidelines is necessary. Cellular phones have become a necessary device for communicating in hospitals. Cellular phones contaminated with bacteria may serve as a fomite in the transmission of pathogens by the hands of medical personnel. Nevertheless, studies about rate and levels of bacterial contamination of cellular phones have been extremely limited with regards to dental personnel. The purpose of this study was to identify bacterial flora on the cellular phones of dentists by a molecular biological method using the 16S rRNA cloning and sequencing method. We acquired total 200 clones from dentists' cell phones and identified the bacterial species. Pseudomonas (34.6%), Lactobacillus (18.5%), Azomonas (11.5%), and Janthinobacterium (6%) were the dominant genera on dentists' cell phones. The oral bacteria identified were Anaerococcus lactolyticus, Gibbsiella dentisursi, Lactobacills leiae, Streptococcus mitis, Streptococcus oligofermentans, and Streptococcus sanguinis. Pathogenic bacteria and opportunistic pathogens such as Carnobacterium funditum, Raoultella planticola, Shigella flexneri, Lactobacillus iners, Staphylococcus aureus, and Staphylococcus epidermidis were also identified.

치과에서의 마스크 및 손의 미생물 오염정도 비교 (A Study of the Mask and Hand Contamination in Dental Clinic)

  • 표은지;이경희
    • 대한통합의학회지
    • /
    • 제7권3호
    • /
    • pp.85-94
    • /
    • 2019
  • Purpose: The purpose of this study was to observe the degree of mask contamination in dental hygienist for general and oral bacteria and to identify areas of mask contamination after treatment. Methods: Masks were collected with every fifty dental hygienists who currently working in the department of preventive dentistry, prosthodontics, and orthodontics in Busan. The mask bacteria were collected in specific upper and side parts of the mask. Hand germs were collected using sterile cotton swabs, and then placed in a sterile conical tube. These were transferred to the laboratory. Hand germs and mask bacteria were incubated with nutrient broth (NB) and brain heart infusion broth (BHI) for 24 hrs and each cultured with NB and BHI plate at $37^{\circ}C$ for 48 hrs. Collected data were analyzed using the SPSS Window 20. Results: The number of bacteria was observed in the order of the department of preventive dentistry ($10.1{\times}10^5CFU/ml$), prosthodontics ($14.7{\times}10^5CFU/ml$), and orthodontics ($23.3{\times}10^5CFU/ml$) in the hand. In general bacteria, the difference of contamination was seen by the parts of the mask, but there was no significant difference. However, the oral bacteria were observed highly contaminated upper part of the mask in preventive dentistry. The mask contamination according to the medical departments was observed. Especially, the contamination of mask in preventive dentistry was significantly higher than other departments in oral bacteria. Conclusion: This study suggested that correct mask replacement and recognition of contamination areas can contribute to the prevention of infectious disease. and it would be necessary to increase hand hygiene performance to prevent cross-infection with masks. Also, this study may give an idea for making guidelines for mask management and supporting to establish clear criteria for the education program of personal protective equipment.

Antimicrobial Activity of Berberine against Oral Bacteria Related to Endodontic Infections

  • Lee, Dongkyun;Kim, Min Jung;Park, Soon-Nang;Lim, Yun Kyong;Min, Jeong-Beom;Hwang, Ho-Keel;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • 제38권4호
    • /
    • pp.141-147
    • /
    • 2013
  • It has been established that berberine has strong antimicrobial effects. Little is known however regarding the antimicrobial activity of berberine against endodontic pathogenic bacteria or its cytotoxicity in human oral tissue cells. The antibacterial properties of berberine were tested against 5 strains of Enterococcus faecalis and type strains of Aggregatibacter actinomycetemcomitans, Prevotella nigrescens, Prevotella intermedia, and Tannerella forsythia, which are involved in endodontic infections. Antimicrobial activity was evaluated through minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) measurements. The viability of normal human gingival fibroblast (NHGF) cells after exposure to berberine was measured using a methyl thiazolyl tetrazolium (MTT) assay. The data showed that berberine has antimicrobial effects against A. actinomycetemcomitans with an MIC and MBC of $12.5{\mu}g/ml$ and $25{\mu}g/ml$, respectively. In the cytotoxicity studies, cell viability was maintained at 66.1% following exposure to $31.3{\mu}g/ml$ berberine. Overall, these findings suggest that berberine has antimicrobial activity against the tested bacteria. Nevertheless, lower concentrations in combination with other reagents will need to be tested before these in vitro results can be translated to clinical use.