DOI QR코드

DOI QR Code

Two Sjogren syndrome-associated oral bacteria, Prevotella melaninogenica and Rothia mucilaginosa, induce the upregulation of major histocompatibility complex class I and hypoxia-associated cell death, respectively, in human salivary gland cells

  • Lee, Jaewon (Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Jeon, Sumin (Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Choi, Youngnim (Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University)
  • Received : 2021.12.06
  • Accepted : 2021.12.14
  • Published : 2021.12.29

Abstract

Despite evidence that bacteria-sensing Toll-like receptors (TLRs) are activated in salivary gland tissues of Sjogren syndrome (SS) patients, the role of oral bacteria in SS etiopathogenesis is unclear. We previously reported that two SS-associated oral bacteria, Prevotella melaninogenica (Pm) and Rothia mucilagenosa (Rm), oppositely regulate the expression of major histocompatibility complex class I (MHC I) in human salivary gland (HSG) cells. Here, we elucidated the mechanisms underlying the differential regulation of MHC I expression by these bacteria. The ability of Pm and Rm to activate TLR2, TLR4, and TLR9 was examined using TLR reporter cells. HSG cells were stimulated by the TLR ligands, Pm, and Rm. The levels of MHC I expression, bacterial invasion, and viability of HSG cells were examined by flow cytometry. The hypoxic status of HSG cells was examined using Hypoxia Green. HSG cells upregulated MHC I expression in response to TLR2, TLR4, and TLR9 activation. Both Pm and Rm activated TLR2 and TLR9 but not TLR4. Rm-induced downregulation of MHC I strongly correlated with bacterial invasion and cell death. Rm-induced cell death was not rescued by inhibitors of the diverse cell death pathways but was associated with hypoxia. In conclusion, Pm upregulated MHC I likely through TLR2 and TLR9 activation, while Rm-induced hypoxia-associated cell death and the downregulation of MHC I, despite its ability to activate TLR2 and TLR9. These findings may provide new insight into how oral dysbiosis can contribute to salivary gland tissue damage in SS.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (Daejeon, Korea) through the grants 2018R1A5A2024418 and 2020R1A2C2007038.

References

  1. Maslinska M, Przygodzka M, Kwiatkowska B, Sikorska-Siudek K. Sjogren's syndrome: still not fully understood disease. Rheumatol Int 2015;35:233-41. doi: 10.1007/s00296-014-3072-5.
  2. Shiboski SC, Shiboski CH, Criswell L, Baer A, Challacombe S, Lanfranchi H, Schiodt M, Umehara H, Vivino F, Zhao Y, Dong Y, Greenspan D, Heidenreich AM, Helin P, Kirkham B, Kitagawa K, Larkin G, Li M, Lietman T, Lindegaard J, McNamara N, Sack K, Shirlaw P, Sugai S, Vollenweider C, Whitcher J, Wu A, Zhang S, Zhang W, Greenspan J, Daniels T; Sjogren' s International Collaborative Clinical Alliance (SICCA) Research Groups. American College of Rheumatology classification criteria for Sjogren's syndrome: a data-driven, expert consensus approach in the Sjogren's International Collaborative Clinical Alliance cohort. Arthritis Care Res (Hoboken) 2012;64:475-87. doi: 10.1002/acr.21591.
  3. Christodoulou MI, Kapsogeorgou EK, Moutsopoulos HM. Characteristics of the minor salivary gland infiltrates in Sjogren's syndrome. J Autoimmun 2010;34:400-7. doi: 10.1016/j.jaut.2009.10.004.
  4. Mitsias DI, Kapsogeorgou EK, Moutsopoulos HM. Sjogren' s syndrome: why autoimmune epithelitis? Oral Dis 2006;12:523-32. doi: 10.1111/j.1601-0825.2006.01292.x.
  5. Tsunawaki S, Nakamura S, Ohyama Y, Sasaki M, Ikebe-Hiroki A, Hiraki A, Kadena T, Kawamura E, Kumamaru W, Shinohara M, Shirasuna K. Possible function of salivary gland epithelial cells as nonprofessional antigen-presenting cells in the development of Sjogren's syndrome. J Rheumatol 2002;29:1884-96.
  6. Kiripolsky J, Kramer JM. Current and emerging evidence for Toll-like receptor activation in Sjogren's syndrome. J Immunol Res 2018;2018:1246818. doi: 10.1155/2018/1246818.
  7. Kwok SK, Cho ML, Her YM, Oh HJ, Park MK, Lee SY, Woo YJ, Ju JH, Park KS, Kim HY, Park SH. TLR2 ligation induces the production of IL-23/IL-17 via IL-6, STAT3 and NF-kB pathway in patients with primary Sjogren's syndrome. Arthritis Res Ther 2012;14:R64. doi: 10.1186/ar3780.
  8. Horai Y, Nakamura H, Nakashima Y, Hayashi T, Kawakami A. Analysis of the downstream mediators of toll-like receptor 3-induced apoptosis in labial salivary glands in patients with Sjogren's syndrome. Mod Rheumatol 2016;26:99-104. doi: 10.3109/14397595.2015.1045256.
  9. Zheng L, Zhang Z, Yu C, Yang C. Expression of Toll-like receptors 7, 8, and 9 in primary Sjogren's syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:844-50. doi: 10.1016/j.tripleo.2010.01.006.
  10. Gottenberg JE, Cagnard N, Lucchesi C, Letourneur F, Mistou S, Lazure T, Jacques S, Ba N, Ittah M, Lepajolec C, Labetoulle M, Ardizzone M, Sibilia J, Fournier C, Chiocchia G, Mariette X. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjogren's syndrome. Proc Natl Acad Sci U S A 2006;103:2770-5. doi: 10.1073/pnas.0510837103.
  11. Spachidou MP, Bourazopoulou E, Maratheftis CI, Kapsogeorgou EK, Moutsopoulos HM, Tzioufas AG, Manoussakis MN. Expression of functional Toll-like receptors by salivary gland epithelial cells: increased mRNA expression in cells derived from patients with primary Sjogren's syndrome. Clin Exp Immunol 2007;147:497-503. doi: 10.1111/j.1365-2249.2006.03311.x.
  12. Alam J, Lee A, Lee J, Kwon DI, Park HK, Park JH, Jeon S, Baek K, Lee J, Park SH, Choi Y. Dysbiotic oral microbiota and infected salivary glands in Sjogren's syndrome. PLoS One 2020;15:e0230667. doi: 10.1371/journal.pone.0230667.
  13. Shirasuna K, Sato M, Miyazaki T. A neoplastic epithelial duct cell line established from an irradiated human salivary gland. Cancer 1981;48:745-52. doi: 10.1002/1097-0142(19810801)48:3<745::aidcncr2820480314>3.0.co;2-7.
  14. Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 1999;163:1-5.
  15. Shin JE, Kim YS, Oh JE, Min BM, Choi Y. Treponema denticola suppresses expression of human {beta}-defensin-3 in gingival epithelial cells through inhibition of the toll-like receptor 2 axis. Infect Immun 2010;78:672-9. doi: 10.1128/IAI.00808-09.
  16. Labbe K, Saleh M. Cell death in the host response to infection. Cell Death Differ 2008;15:1339-49. doi: 10.1038/cdd.2008.91.
  17. Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med 2011;364:656-65. doi: 10.1056/NEJMra0910283.
  18. Nair-Gupta P, Baccarini A, Tung N, Seyffer F, Florey O, Huang Y, Banerjee M, Overholtzer M, Roche PA, Tampe R, Brown BD, Amsen D, Whiteheart SW, Blander JM. TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 2014;158:506-21. doi: 10.1016/j.cell.2014.04.054.
  19. Pathosystems Resource Integration Center [Internet]. Chicago: University of Chicago; 2020 [cited 2021 Aug 4]. Available from: https://www.patricbrc.org/view/Genome/553201.3#view_tab=features&filter=and(or(eq(feature_type,%22CDS%22)),or(eq(annotation,%22PATRIC%22)),keyword(oxidase))
  20. Hogg S. Essential microbiology. Hoboken: Wiley; 2005.
  21. Bhandari T, Nizet V. Hypoxia-inducible factor (HIF) as a pharmacological target for prevention and treatment of infectious diseases. Infect Dis Ther 2014;3:159-74. doi: 10.1007/s40121-014-0030-1.
  22. Sethumadhavan S, Silva M, Philbrook P, Nguyen T, Hatfield SM, Ohta A, Sitkovsky MV. Hypoxia and hypoxia-inducible factor (HIF) downregulate antigen-presenting MHC class I molecules limiting tumor cell recognition by T cells. PLoS One 2017;12:e0187314. doi: 10.1371/journal.pone.0187314.
  23. Lin LC, Elkashty O, Ramamoorthi M, Trinh N, Liu Y, SunavalaDossabhoy G, Pranzatelli T, Michael DG, Chivasso C, Perret J, Chiorini JA, Delporte C, Tran SD. Cross-contamination of the human salivary gland HSG cell line with HeLa cells: a STR analysis study. Oral Dis 2018;24:1477-83. doi: 10.1111/odi.12920.
  24. Coats SR, Reife RA, Bainbridge BW, Pham TT, Darveau RP. Porphyromonas gingivalis lipopolysaccharide antagonizes Escherichia coli lipopolysaccharide at toll-like receptor 4 in human endothelial cells. Infect Immun 2003;71:6799-807. doi: 10.1128/IAI.71.12.6799-6807.2003.
  25. Nativel B, Couret D, Giraud P, Meilhac O, d'Hellencourt CL, Viranaicken W, Da Silva CR. Porphyromonas gingivalis lipopolysaccharides act exclusively through TLR4 with a resilience between mouse and human. Sci Rep 2017;7:15789. doi: 10.1038/s41598-017-16190-y.
  26. Yang JS, Kim HJ, Kang SS, Kim KW, Kim DW, Yun CH, Park SJ, Seo HS, Finlay BB, Han SH. TLR2, but not TLR4, plays a predominant role in the immune responses to cholera vaccines. J Leukoc Biol 2015;98:661-9. doi: 10.1189/jlb.4A1014-498R.
  27. Lee J, Alam J, Choi E, Ko YK, Lee A, Choi Y. Association of a dysbiotic oral microbiota with the development of focal lymphocytic sialadenitis in IκB-ζ-deficient mice. NPJ Biofilms Microbiomes 2020;6:49. doi : 10.1038/s41522-020-00158-4.