• 제목/요약/키워드: Optoelectronic Devices

검색결과 263건 처리시간 0.034초

Low-temperture Synthesis of CdTe/Te Core-shell Hetero-nanostructures by Vapor-solid Process

  • 송관우;김태훈;배지환;이재욱;박민호;양철웅
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.580-580
    • /
    • 2012
  • Heterostructures has unique and important properties, which may be helpful for finding many potential applications in the field of electronic, thermoelectric, and optoelectronic devices. We synthesized CdTe/Te core-shell heterostructures by vapor-solid process at low temperatures using a quartz tube furnace. Two step vapor-solid processes were employed. First, various tellurium structures such as nanowires, nanorods, nanoneedles, microtubes and microrods were synthesized under various deposition conditions. These tellurium nanostructures were then used as substrates in the second step to synthesize the CdTe/Te core-shell heterostructures. Using this method, various sizes, shapes and types of CdTe/Te core-shell structures were fabricated under a range of conditions. These structures were analysed by scanning electron microscopy, high resolution transmission electron microscopy, and energy dispersive x-ray spectroscopy. The vapor phase process at low temperatures appears to be an efficient method for producing a variety of Cd/Te hetero-nanostructures. In addition, the hetero-nanostructures can be tailored to the needs of specific applications by deliberately controlling the synthetic parameters.

  • PDF

Influence of Oxygen Partial Pressure on ZnO Thin Films for Thin Film Transistors

  • Kim, Jae-Won;Kim, Ji-Hong;Roh, Ji-Hyoung;Lee, Kyung-Joo;Moon, Sung-Joon;Do, Kang-Min;Park, Jae-Ho;Jo, Seul-Ki;Shin, Ju-Hong;Yer, In-Hyung;Koo, Sang-Mo;Moon, Byung-Moo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.106-106
    • /
    • 2011
  • Recently, zinc oxide (ZnO) thin films have attracted great attention as a promising candidate for various electronic applications such as transparent electrodes, thin film transistors, and optoelectronic devices. ZnO thin films have a wide band gap energy of 3.37 eV and transparency in visible region. Moreover, ZnO thin films can be deposited in a poly-crystalline form even at room temperature, extending the choice of substrates including even plastics. Therefore, it is possible to realize thin film transistors by using ZnO thin films as the active channel layer. In this work, we investigated influence of oxygen partial pressure on ZnO thin films and fabricated ZnO-based thin film transistors. ZnO thin films were deposited on glass substrates by using a pulsed laser deposition technique in various oxygen partial pressures from 20 to 100 mTorr at room temperature. X-ray diffraction (XRD), transmission line method (TLM), and UV-Vis spectroscopy were employed to study the structural, electrical, and optical properties of the ZnO thin films. As a result, 80 mTorr was optimal condition for active layer of thin film transistors, since the active layer of thin film transistors needs high resistivity to achieve low off-current and high on-off ratio. The fabricated ZnO-based thin film transistors operated in the enhancement mode with high field effect mobility and low threshold voltage.

  • PDF

Growth of ZnTe Thin Films by Oxygen-plasma Assisted Pulsed Laser Deposition

  • Pak, Sang-Woo;Suh, Joo-Young;Lee, Dong-Uk;Kim, Eun-Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.185-185
    • /
    • 2011
  • ZnTe semiconductor is very attractive materials for optoelectronic devices in the visible green spectral region because of it has direct bandgap of 2.26 eV. The prototypes of ZnTe light emitting diodes (LEDs) have been reported [1], showing that their green emission peak closely matches the most sensitive region of the human eye. Another application to photovoltaics proved that ZnTe is useful for the production of high-efficiency multi-junction solar cells [2,3]. By using the pulse laser deposition system, ZnTe thin films were deposited on ZnO thin layer, which is grown on (0001) Al2O3substrates. To produce the plasma plume from an ablated ZnO and ZnTe target, a pulsed (10 Hz) YGA:Nd laser with energy density of 95 mJ/$cm^2$ and wavelength of 266 nm by a nonlinear fourth harmonic generator was used. The laser spot focused on the surface of the ZnO and ZnTe target by using an optical lens was approximately 1 mm2. The base pressure of the chamber was kept at a pressure around $10^{-6}$ Torr by using a turbo molecular pump. The oxygen gas flow was controlled around 3 sccm by using a mass flow controller system. During the ZnTe deposition, the substrate temperature was $400^{\circ}C$ and the ambient gas pressure was $10^{-2}$ Torr. The structural properties of the samples were analyzed by XRD measurement. The optical properties were investigated by using the photoluminescence spectra obtained with a 325 nm wavelength He-Cd laser. The film surface and carrier concentration were analyzed by an atomic force microscope and Hall measurement system.

  • PDF

Work function variation of doped ZnO nanorods by Kelvin probe force microscopy

  • Ben, Chu Van;Hong, Min-Chi;Yang, Woo-Chul
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.446-446
    • /
    • 2011
  • One dimensional (1-D) structures of ZnO nanorods are promising elements for future optoelectronic devices. However there are still many obstacles in fabricating high-quality p-type ZnO up to now. In addition, it is limited to measure the degree of the doping concentration and carrier transport of the doped 1-D ZnO with conventional methods such as Hall measurement. Here we demonstrate the measurement of the electronic properties of p- and n-doped ZnO nanorods by the Kelvin probe force microscopy (KPFM). Vertically aligned ZnO nanorods with intrinsic n-doped, As-doped p-type, and p-n junction were grown by vapor phase epitaxy (VPE). Individual nanowires were then transferred onto Au films deposited on Si substrates. The morphology and surface potentials were measured simultaneously by the KPFM. The work function of the individual nanorods was estimated by comparing with that of gold film as a reference, and the doping concentration of each ZnO nanorods was deduced. Our KPFM results show that the average work function difference between the p-type and n-type regions of p-n junction ZnO nanorod is about ~85meV. This value is in good agreement with the difference in the work function between As-doped p- and n-type ZnO nanorods (96meV) measured with the same conditions. This value is smaller than the expected values estimated from the energy band diagram. However it is explained in terms of surface state and surface band bending.

  • PDF

안티몬 도핑된 주석 산화물 투명전도막의 몰 농도에 따른 치밀한 표면 구조 제조 (Fabrication of compact surface structure by molar concentration on Sb-doped SnO2 transparent conducting films)

  • 배주원;구본율;안효진
    • 한국분말재료학회지
    • /
    • 제25권1호
    • /
    • pp.54-59
    • /
    • 2018
  • Sb-doped $SnO_2$ (ATO) transparent conducting films are fabricated using horizontal ultrasonic spray pyrolysis deposition (HUSPD) to form uniform and compact film structures with homogeneously supplied precursor solution. To optimize the molar concentration and transparent conducting performance of the ATO films using HUSPD, we use precursor solutions of 0.15, 0.20, 0.25, and 0.30 M. As the molar concentration increases, the resultant ATO films exhibit more compact surface structures because of the larger crystallite sizes and higher ATO crystallinity because of the greater thickness from the accelerated growth of ATO. Thus, the ATO films prepared at 0.25 M have the best transparent conducting performance ($12.60{\pm}0.21{\Omega}/{\square}$ sheet resistance and 80.83% optical transmittance) and the highest figure-of-merit value ($9.44{\pm}0.17{\times}10^{-3}{\Omega}^{-1}$). The improvement in transparent conducting performance is attributed to the enhanced carrier concentration by the improved ATO crystallinity and Hall mobility with the compact surface structure and preferred (211) orientation, ascribed to the accelerated growth of ATO at the optimized molar concentration. Therefore, ATO films fabricated using HUSPD are transparent conducting film candidates for optoelectronic devices.

ZnO 나노입자의 광전류 특성 (Photocurrent Characteristics of ZnO Nanoparticles)

  • 전진형;성호준;조경아;김상식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.207-207
    • /
    • 2008
  • ZnO is one of the widely utilized n-type semiconducting oxide materials in the field of optoelectronic devices. For its application to the fabrication of promising ultraviolet (UV) photodetectors, ZnO with various structures has been extensively studied. However, study on the photodetectors using zero-dimensional (0-D) ZnO nanoparticle is scarce while the 0-D nanoparticle structure has many advantages compared to the other dimensional structures for absorption of light. In this study, the photocurrent characteristics of ZnO nanoparticles were investigated through a simply pasting of the nanoparticles across the pre-patterned electrodes. Then the photoluminescence (PL) characteristic, photocurrent response spectrum, photo- and dark-current and photoresponse spectrum were investigated with a He-Cd laser and an Xe lamp. An dominant PL peak of the ZnO nanoparticles was located at the wavelength of 380 nm under the illumination of 325-nm wavelength light. The ratio of photocurrent to dark current (on/off ratio) is as high as 106 which is considerable value for promising photodetectors. On the other hand, the time constants in photoresponse were relatively slow. The reasons of the high on/off ratio and relatively slow photoresponse characteristic will be discussed.

  • PDF

Electrical and Optical Study of PLED & OLEDS Structures

  • Mohammed, BOUANATI Sidi;SARI, N. E. CHABANE;Selma, MOSTEFA KARA
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권3호
    • /
    • pp.124-129
    • /
    • 2015
  • Organic electronics are the domain in which the components and circuits are made of organic materials. This new electronics help to realize electronic and optoelectronic devices on flexible substrates. In recent years, organic materials have replaced conventional semiconductors in many electronic components such as, organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic (OPVs). It is well known that organic light emitting diodes (OLEDs) have many advantages in comparison with inorganic light-emitting diodes LEDs. These advantages include the low price of manufacturing, large area of electroluminescent display, uniform emission and lower the requirement for power. The aim of this paper is to model polymer LEDs and OLEDs made with small molecules for studying the electrical and optical characteristics. The purpose of this modeling process is, to obtain information about the running of OLEDs, as well as, the injection and charge transport mechanisms. The first simulation structure used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2'-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode with a high work function, usually an indium tin oxide (ITO) substrate, and a cathode with a relatively low work function, such as Al. Electrons will then be injected from the cathode and recombine with electron holes injected from the anode, emitting light. In the second structure, we replaced MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). This simulation uses, the Poole-Frenkel -like mobility model and the Langevin bimolecular recombination model as the transport and recombination mechanism. These models are enabled in ATLAS- SILVACO. To optimize OLED performance, we propose to change some parameters in this device, such as doping concentration, thickness and electrode materials.

이산화규소 증착된 스테인레스 기판위에 형성된 은 금속 박막의 급속 열처리에 대한 효과 (Rapid Thermal Annealing for Ag Layers on SiO2 Coated Metal Foils)

  • 김경보
    • 융합정보논문지
    • /
    • 제10권8호
    • /
    • pp.137-143
    • /
    • 2020
  • SiO2 증착된 금속 호일 기판에 형성된 은 금속 박막의 급속 열처리에 대한 물리적 및 화학적 특성 영향을 조사하였다. 은 박막을 150도에서 550도까지 온도를 변화시키며, 각 온도에서 20분 동안 급속 열처리를 진행하였다. 550도에서 표면 거칠기와 저항이 급격하게 증가하는 현상을 발견하였다. 따라서 550도의 열처리 온도 샘플에 대해 조성 분석 기법을 사용하였고, 은 필름 표면에 산소 (O) 및 실리콘 (Si) 원자가 존재함을 확인하였다. 박막의 광학적 특성인, 전체 반사율은 온도가 증가함에 따라 감소하였으며, 특히 550도에서 공정을 진행한 박막은 박막 및 기판 표면으로부터의 다중 반사에 의한 광학적 간섭으로 인해 정현파 특성을 나타냄을 확인하였다. 이러한 현상은 급속 열처리 동안 SiO2 층으로부터 Si 원자의 외부 확산에 기인한 것이다. 본 연구 결과는 다양한 플렉서블 광전자소자의 기판으로 사용할 수 있는 가능성을 제공한다.

준귀금속 전이원소, Pt, Pd를 이용한 p-InGaAs의 오믹 접촉저항 특성 연구 (Ohmic Contact Characteristics of p-InGaAs with Near-Noble Transition Metals of Pt and Pd)

  • 박영산;류상완;유준상;김효진;김선훈;김진혁
    • 한국재료학회지
    • /
    • 제16권10호
    • /
    • pp.629-632
    • /
    • 2006
  • Electrical characteristics of Pt/Ti/Pt/Au and Pd/Zn/Pd/Au contacts to p-type InGaAs grown on an InP substrate have been characterized as a function of the doping concentration and the annealing temperature. The Pt/Ti/Pt/Au contacts produced the specific contact resistance as low as $2.3{\times}10^{-6}{\Omega}{\cdot}cm^2$, when heat-treated at an annealing temperature of $400^{\circ}C$. Comparison of the Pt/Ti/Pt/Au and Ti/Pt/Au contacts showed that the first Pt layer plays an important role in reducing the contact resistivity probably by lowering energy barrier at the metal-semiconductor interface. For the Pd/Zn/Pd/Au contacts, the contact resistivity remained virtually unchanged with increasing annealing temperature. The specific contact resistivity as low as $4.7{\times}10^{-6}{\Omega}{\cdot}cm^2$ was obtained. The results indicate that the Pt/Ti/Pt/Au and Pd/Zn/Pd/Au schemes could be potentially important for the fabrication of InP-based optoelectronic devices, such as photodetector and optical modulator.

대기압 이상의 열처리 공정압력이 Cu2ZnSn(S,Se)4(CZTSSe) 박막 성장에 미치는 영향 (Effect of Annealing Process Pressure Over Atmospheric Pressure on Cu2ZnSn(S,Se)4 Thin Film Growth)

  • 이병훈;류혜선;장준성;이인재;김지훈;조은애;김진혁
    • 한국재료학회지
    • /
    • 제29권9호
    • /
    • pp.553-558
    • /
    • 2019
  • $Cu_2ZnSn(S,Se)_4(CZTSSe)$ thin film solar cells areone of the most promising candidates for photovoltaic devices due to their earth-abundant composition, high absorption coefficient and appropriate band gap. The sputtering process is the main challenge to achieving high efficiency of CZTSSe solar cells for industrialization. In this study, we fabricated CZTSSe absorbers on Mo coated soda lime glass using different pressures during the annealing process. As an environmental strategy, the annealing process is performed with S and Se powder, without any toxic $H_2Se$ and/or $H_2S$ gases. Because CZTSSe thin films have a very narrow stable phase region, it is important to control the condition of the annealing process to achieve high efficiency of the solar cell. To identify the effect of process pressure during the sulfo-selenization, we experiment with varying initial pressure from 600 Torr to 800 Torr. We fabricate a CZTSSe thin film solar cell with 8.24 % efficiency, with 435 mV for open circuit voltage($V_{OC}$) and $36.98mA/cm^2$ for short circuit current density($J_{SC}$), under a highest process pressure of 800 Torr.