Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.9.553

Effect of Annealing Process Pressure Over Atmospheric Pressure on Cu2ZnSn(S,Se)4 Thin Film Growth  

Lee, Byeong Hoon (Department of Materials Science and Engineering, Chonnam National University)
Yoo, Hyesun (Optoelectronic Convergence Research Center, Chonnam National University)
Jang, Jun Sung (Department of Materials Science and Engineering, Chonnam National University)
Lee, InJae (Department of Materials Science and Engineering, Chonnam National University)
Kim, Jihun (Scool of Integrated Technology, Gwangju Institute of Science and Technology)
Jo, Eunae (Department of Materials Science and Engineering, Chonnam National University)
Kim, Jin Hyeok (Department of Materials Science and Engineering, Chonnam National University)
Publication Information
Korean Journal of Materials Research / v.29, no.9, 2019 , pp. 553-558 More about this Journal
Abstract
$Cu_2ZnSn(S,Se)_4(CZTSSe)$ thin film solar cells areone of the most promising candidates for photovoltaic devices due to their earth-abundant composition, high absorption coefficient and appropriate band gap. The sputtering process is the main challenge to achieving high efficiency of CZTSSe solar cells for industrialization. In this study, we fabricated CZTSSe absorbers on Mo coated soda lime glass using different pressures during the annealing process. As an environmental strategy, the annealing process is performed with S and Se powder, without any toxic $H_2Se$ and/or $H_2S$ gases. Because CZTSSe thin films have a very narrow stable phase region, it is important to control the condition of the annealing process to achieve high efficiency of the solar cell. To identify the effect of process pressure during the sulfo-selenization, we experiment with varying initial pressure from 600 Torr to 800 Torr. We fabricate a CZTSSe thin film solar cell with 8.24 % efficiency, with 435 mV for open circuit voltage($V_{OC}$) and $36.98mA/cm^2$ for short circuit current density($J_{SC}$), under a highest process pressure of 800 Torr.
Keywords
CZTSSe; kesterite; photovoltaic; high pressure; thin film solar cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Jiang, F. Lan, X. Yan and G. Li, Phys. Status Solidi A, 8, 223 (2014).   DOI
2 A. Fairbrother, X. Fontane, V. Izquierdo-Roca, M. Espindola-Rodriguez, S. Lopex- Marino, M. Placidi, J. Lopez- Garcia, A. Perez-Rodriguez and E. Saucedo, ChemPhysChem, 14, 1836 (2013).   DOI
3 W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu and D. B. Mitzi, Adv. Energy Mater., 4, 1301465 (2014).   DOI
4 G. Kaune, S. Hartnauer and R. Scheer, Phys. Status Solidi A, 211, 1991, (2014).   DOI
5 J. Wang, S. Li, J. Cai, B. Shen, Y. Ren and G. Qin, J. Alloys Compd., 552, 418 (2013).   DOI
6 L. Vauche, J. Dubois, A. Laparre, F. Mollica, R. Bodeux, S. Delbos, C. M. Ruiz, M. Pasquinelli, F. Bahi, T. G. de Monsabert, S. Jaime, S. Bodnar and P. Grand, Phys. Status Solidi A, 211, 2082 (2014).   DOI
7 B. Flynn, W. Wang, C. Chang and G. S. Herman, Phys. Status Solidi A, 209, 2186 (2012).   DOI
8 J. Gang, D. Son, J. Sim, D. Hwang, S. Sung, G. Yang and D. Kim, KIC News., 20, 2 (2017).
9 J. Kim and W. Jo, BKP, 3, 18 (2017).
10 P. Salome, P. Fernandes, A. Cunha, J. Leitao, J. Malaquias, A. Weber, J. Gonzalez and M. Silva, Sol. Energy Mater. Sol. Cells., 94, 2176 (2010).   DOI
11 P. Salome, P. Fernandes and A. Cunha, Phys. Status Solidi C, 7, 913 (2010).
12 M. Santos, M. Courel, N. Mathews and X. Mathew, Mater. Sci. Semicond. Process., 68, 68 (2017).   DOI
13 J. Watjen, J. Scragg, M. Edoff, S. Rubino and C. Platzer-Bjorkman, Appl. Phys. Lett., 102, 051902 (2013).   DOI