DOI QR코드

DOI QR Code

Ohmic Contact Characteristics of p-InGaAs with Near-Noble Transition Metals of Pt and Pd

준귀금속 전이원소, Pt, Pd를 이용한 p-InGaAs의 오믹 접촉저항 특성 연구

  • Park, Young-San (Department of Physics and Institute of Optoelectronics, Chonnam National University) ;
  • Ryu, Sang-Wan (Department of Physics and Institute of Optoelectronics, Chonnam National University) ;
  • Yu, Jun-Sang (OE Solutions) ;
  • Kim, Hyo-Jin (Korea Photonics Technology Institute) ;
  • Kim, Sun-Hun (Korea Photonics Technology Institute) ;
  • Kim, Jin-Hyeok (Department of Materials Science and Engineering, Chonnam National University)
  • Published : 2006.10.27

Abstract

Electrical characteristics of Pt/Ti/Pt/Au and Pd/Zn/Pd/Au contacts to p-type InGaAs grown on an InP substrate have been characterized as a function of the doping concentration and the annealing temperature. The Pt/Ti/Pt/Au contacts produced the specific contact resistance as low as $2.3{\times}10^{-6}{\Omega}{\cdot}cm^2$, when heat-treated at an annealing temperature of $400^{\circ}C$. Comparison of the Pt/Ti/Pt/Au and Ti/Pt/Au contacts showed that the first Pt layer plays an important role in reducing the contact resistivity probably by lowering energy barrier at the metal-semiconductor interface. For the Pd/Zn/Pd/Au contacts, the contact resistivity remained virtually unchanged with increasing annealing temperature. The specific contact resistivity as low as $4.7{\times}10^{-6}{\Omega}{\cdot}cm^2$ was obtained. The results indicate that the Pt/Ti/Pt/Au and Pd/Zn/Pd/Au schemes could be potentially important for the fabrication of InP-based optoelectronic devices, such as photodetector and optical modulator.

Keywords

References

  1. A. Agarwal, S. Banerjee, D. F. Grosz, A. P. Kung, D. N. Maywar, and T. H. Wood, IEEE Photon. Technol. Lett. 15, 1779 (2003) https://doi.org/10.1109/LPT.2003.819721
  2. H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Murai, K. Yamada, and H. Wada, IEEE Photon. Technol. Lett. 13, 954 (2001) https://doi.org/10.1109/68.942658
  3. G. Franz and M. Amann, J. Electrochem. Soc. 140, 847 (1993) https://doi.org/10.1149/1.2056171
  4. D. Y. Kim, J. S. Yu, S. J. Bae, J. D. Song, J. M. Kim and Y. T. Lee, J. Korean Phys. Soc. 38, 236 (2001)
  5. P. Ressel, K. Vogel, D. Frizsche, K. Mause, Electronics Letters. 28, 2237 (1992) https://doi.org/10.1049/el:19921437
  6. L. C. Wang, M. -H. Park, F. Deng, A. Clawson, S. S. Lau, D. M. Hwang, and C. J. Palmstrom, Appl. Phys. Lett. 66, 3310 (1995) https://doi.org/10.1063/1.113740
  7. S. Hwang, J. Shim, and Y. Eo, J. Korean Phys. Soc. 46, 751 (2005)
  8. Y. -D. Woo and J. -S. Hong, Sae Mulli 49, 164 (2004)
  9. G. K. Reeves and H. B. Harrison, IEEE Electron Device Lett. 3, 111 (1982) https://doi.org/10.1109/EDL.1982.25502