• 제목/요약/키워드: Optimum Process Target

Search Result 102, Processing Time 0.023 seconds

Optimum target values for manufacturing processes when drifting rate in the process mean is normally distributed (공정평균의 변화율이 정규분포인 제조공정의 최적 목표값)

  • Lee, Jae-Hoon;Park, Tae-Ho;Kwon, Hyuck-Moo;Hong, Sung-Hoon;Lee, Min-Koo
    • Journal of Korean Society for Quality Management
    • /
    • v.38 no.4
    • /
    • pp.540-548
    • /
    • 2010
  • We consider the problem of selecting the most profitable initial process mean and length of production cycle for manufacturing processes subject to a constant linear trend during the same cycle that varies after resetting the processes. Assuming that the quality characteristic of interest is normally distributed, the optimum initial process mean and the length of production cycle are jointly obtained by minimizing the expected loss per unit time. We assume that the quality loss function due to the deviation from the target value is quadratic and resetting loss is constant. We consider both cases of symmetric and asymmetric quality loss function. An illustrative example is given and sensitivity analysis performed.

Optimum Parameter Values for A Metal Plating Process (금속도금공정에서의 최적 모수 값 결정)

  • Kim, Young-Jin;Hong, Sung-Hoon;Lee, Min-Koo;Kwon, Hyuck-Moo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.3
    • /
    • pp.337-343
    • /
    • 2008
  • The problem of determining the optimum metal plating thicknesses on the plane and curved surfaces of an electronic part is considered. A lower specification limit for the plating thickness is usually pre-specified. In most applications, the plating thickness on the curved surface is proportional to that on the plane surface. The proportion can be adjusted by adding chemical catalysts to the plating fluid. From the economic point of view, nonconforming items with a thickness smaller than the lower specification limit incur rejection costs, such as rework and scrap costs, while a thicker plating may incur an excessive material costs. In this article, an economic model is proposed for simultaneously determining the target plating thickness and the ratio of the plating thickness on the plane surface to that on the curved surface. An illustrative example demonstrates the applicability of the proposed model.

Determining the Optimum Target Value for Filling Operations with Nondestructive Sampling Plans (비파괴 샘플링 계획을 갖는 Filling 작업에 대한 최적 목표치 결정)

  • Goh, Hyun Woo;Hwang, Eui Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.14 no.24
    • /
    • pp.187-192
    • /
    • 1991
  • We consider a filling process problem on a production line. Up to present this problem have examined by 100% inspection. Thus a target value is determined which takes into account the regular selling prices, the reprocess cost, the excess quality cost and the process variability and so on. However, in this paper we propose a solution under specified sampling plan when the inspection is nondestructive.

  • PDF

Blank Design in Sheet Metal forming Process Using the Rollback Method (롤백방법을 이용한 박판금속성형공정에서의 블랭크 설계)

  • 김종엽;김낙수;허만성
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.454-464
    • /
    • 1999
  • A new blank design method is proposed to predict the optimum initial blank shape in the sheet metal forming process. The rollback method for blank shape design takes the difference between the deformed blank contour and the target contour shape into account. the minimization object function R is proposed. Based on the method, a computer program composed of blank design module, FE-analysis module and mesh generation module is developed. The rollback method is applied to square cup, reentrant cross section, L-shaped cup drawing process with the flange of uniform size around its periphery to confirm its validity. The optimum initial blank shape is obtained from an arbitrary blank shape after several modifications. Good agreements are recognized between the numerical results and the published experimental results for initial blank shape and thickness strain distribution. It is concluded that the rollback method is an effective and convenient method for an optimum blank shape design.

  • PDF

Design of Steering System Considering Interaction Effects in Discrete Design Space (교호작용을 고려한 이산설계 공간에서의 Steering System 설계)

  • Kwon, Woo-Sung;Park, Kwang-Seo;Kim, Young-Ho;Kim, In-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.786-792
    • /
    • 2006
  • The design of experiment(DOE) with orthogonal arrays is adopted when the engineering design is needed in a discrete design space. In this research, a design process with orthogonal array is peformed to obtain the optimum design which satisfy the frequency target of the steering system. The optimum design is determined from the analysis of means(ANOM) and sensitivity information about design variables is evaluated by the analysis of variance(ANOVA). Interactions between design variables are investigated to achieve additivity which should be valid in using orthogonal array. It is shown that when strong interactions exist, the DOE process with orthogonal array considering interaction is introduced to find out optimum design.

  • PDF

Optimum Blank Design of Automobile Sub-Frame (우물정(井)자형 Sub-frame의 블랭크 설계)

  • Kim, Jong-Yop;Kim, Nak-Soo;Heo, Man-Seong
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.260-273
    • /
    • 1998
  • A new blank design method is proposed to predict the optimum initial blank shape in the sheet metal forming process. The rollback method for blank shape design takes the difference between final deformed shaped and target contour shape into account. Based on the method a computer program composed of blank design module FE-analysis program and mesh generation module is developed. The rollback method is applied to square cup drawing process with the flange of unifiorm size around its periphery to confirm its validity. The optimum initial blank shape is obtained from an arbitrary square blank after three modification. Good agreements are recognized between the numerical results and the published results for initial blank shape and thickness strain distribution. The optimum blank shape for two parts of automobile sub-frame is designed, The thickness distribution and the level of punch load is improved. Also the method is applied to design the weld line in the tailor-welded blank. It is concluded that the rollback method is an effective and convenient method for an optimum blank shape design.

  • PDF

Optimum Blank Design of Automobile Sub-Frame (우물정자형 Sub-frame의 블랭크 설계)

  • 김종엽;김낙수;허만성
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.185-195
    • /
    • 1998
  • A new blank design method is proposed to predict the optimum initial blank shape in the sheet metal forming process. The rollback method for blank shape design takes the difference between final deformed shape and target contour shape into account. Based on the method, a computer program composed of blank design module, FE-analysis program and mesh generation module is developed. The rollback method is applied to square cup drawing process with the flange of unifiorm size around its periphery to confirm its validity. The optimum initial blank shape is obtained from an arbitrary square blank after three modifications. Good agreements are recognized between the numerical results and the published results for initial blank shape and thickness strain distribution. The optimum blank shape for two parts of automobile sub-frame is designed. The thickness distribution and the level of punch load is improved. Also, the method is applied to design the weld line in the tailor-welded blank. It is concluded that the rollback method is an effective and convenient method for an optimum blank shape design.

  • PDF

Influence of Substrate Temperature of KLN Thin Film Deposited on Amorphoous Substrate (비정질 기판위에 증착한 KLN 박막의 기판온도에 의한 영향)

  • 박성근;최병진;홍영호;전병억;김진수;백민수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.34-42
    • /
    • 2001
  • The influences of substrate temperature were studied when fabricating KLN thin film on amorphous substrate using an rf-magnetron sputtering method. Investigating the vaporization temperature of the each element, the excess ratio of target and the optimum deposition conditions were effectively selected when thin filmizing a material which have elements with large difference fo vaporization temperature. In order to compensate K and Li which have lower vaporization temperatures than Nb, KLN target of composition excess with K of 60% and Li of 30% was used. KLN thin film fabricated on Corning 1737 glass substrate had single KLN phase above 58$0^{\circ}C$ of substrate temperature and crystallized to c-axis direction. The optimum conditions were rf power of 100W, process pressure of 150mTorr, and substrate temperature of $600^{\circ}C$.

  • PDF

Effect of Coagulation Condition on Coagulation/Ultrafiltration Membrane Process (응집·한외여과 공정에서 응집조건 결정에 관한 연구)

  • Moon, Seong-Yong;Lee, Sang-Hyup;Kim, Seung-Hyun;Moon, Byung-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.379-384
    • /
    • 2005
  • In this research, coagulation was employed as the pretreatment for membrane process. The effective coagulation conditions were decided after the discussion of different coagulant doses and mixing conditions, etc. Raw water was taken from Nakdong River. The best operation occurred when G value was $230s^{-1}$ and the slow mixing lasted around 5 minutes at G value was $23s^{-1}$. To investigate the optimum coagulant dosage, the optimum organics removal was target as organic removal reduces membrane fouling effectively than particle removal. This result indicated that organics are more important causes than turbidity for membrane fouling. However, turbidity becomes an important factor after certain amount of organic matters is removed.

A Study on the Intial Blank Design Using Ideal Forming Theory (이상적 변형이론을 이용한 박판 초기형상 설계에 관한 연구)

  • 박상후;윤정환;양동열;김용환;이장희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.207-218
    • /
    • 1997
  • A new blank design method is introduced to predict the blank shape and the strain distribution in the sheet metal forming process. This method deals with only one step from the final shape to the initial blank using the ideal forming theory. Based on this theory, a three-dimensional membrane finite element code has been developed to design an initial blank in the sheet metal forming process. In this paper, the designs of initial blanks for forming a cylindrical cup, a rectangular cup, and a front fender are presented as examples. Also, it compares the two shapes, the target shape with the shape which is deformed from the initial blank using the FEM analysis code. The results illustrate the information that this direct design code is useful in the preliminary design state.

  • PDF