• Title/Summary/Keyword: Optimum Mix

Search Result 326, Processing Time 0.023 seconds

Practical Use of Self-compacting Concrete by Hydraulic Composition Containing a Segregation-Reducing Agent (수경성 물질용 분리저감제를 사용한 무다짐 콘크리트 실용화 연구)

  • 손유신;이승훈;김규동;김경태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.275-280
    • /
    • 2001
  • Recently, self-compacting concrete is applied in order to achieve workability improvement and rationalization in construction. But self-compacting concrete using viscosity agent has a difficulty in practical use because viscosity agent is invested small quantity and by man-power. Therefore in this paper we have been focused on the development and practical use of self-compacting concrete by hydraulic composition containing the segregation-reducing agent. According to mix variable, we find out right quantity of water, binder and rate of admixture replacement, and also we find out the optimum mix proportion. In the result, self-compacting concrete by hydraulic composition containing the segregation reducing agent gave satisfaction with standard and its demand will increase in the future.

  • PDF

Basic Properties of Dam Concrete using Fly Ash (Fly Ash를 이용한 댐 콘크리트의 기본 물성에 관한 연구)

  • 송영철;우상균;방기성;정원섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.619-624
    • /
    • 1999
  • The purpose of this study is to provide the optimum mix design of fly ash concrete to be placed at the concrete face rockfill dam for pumped storage power plats. The basic performance tests including compressive strength, modulus of elasticity, unit weight, coefficient of thermal expansion, shrinkage, adiabatic temperature rise and analysis of thermal stress were conducted for fly ash concrete. From this study, the fly ash concrete represented the better results in the aspects of basic performance and economy than ordinary portland cement concrete. Especially the concrete mix design containing 15% of fly ash is recommended to be applied in the construction of the concrete face rockfill dam for pumped storage power plants.

  • PDF

A Study on the Optimal Concrete Mix-proportion Selection of PHC-pile by Using of Air-cooled Blast Furnace Slag Coarse Aggregate (괴재 고로슬래그 굵은 골재 사용에 따른 PHC-Pile용 콘크리트 최적 배합 도출에 관한 연구)

  • Jeon, In Ki;Lee, Joo Hun;Park, Yong Kyu;Kim, Hyun Woo;Yoon, Ki Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.270-271
    • /
    • 2014
  • In this study, a replacement ratio of blast furnace slag coarse aggregate and a water binder ratio by an optimum combination of PHC file was investigated. As a results, the target strength 78.5MPa was altogether satisfied in a mix proportion 28-G100-SG0 and W/B ratio 26 %. The surface rupture was generated in 28-G0-SG100 combination after curing with the autoclave. According to the result of measuring the ingredient, the majority were the MgOH2 hydrate.

  • PDF

The Practical Application on the Super Flowing Concrete using Manufactured Sand (부순모래를 사용한 초유동 콘크리트의 현장적용)

  • Park, Chil-Lim;Kwon, Yeong-Ho;Lee, Sang-Soo;Won, Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.9-14
    • /
    • 1998
  • In this paper, we described the basic elements(flowabiligy, fillingability, elapsed time, pumpability, no-vibrating effects, and etc.) required for the application and quality control of the super flowing concrete(SFC) in Top Down site. Also, manufactured sand and fly ash were used for investigating characteristics of SFC through various experiments(mix design, optimum mix condition) before placing the concrete in site. As a result of this project, the developed SFC shown high flowability and self-fillingability in the joint good enough for the requirement. Futhermore, inner uniformity of the no-vibrated concrete was verified by testing reformed space. Therefore, quality control and compressive strength(360kg/$\textrm{cm}^2$) can be secured by using SFC even without vibrating.

  • PDF

An Experimental Study for Crack Prevention of Floor Mortar (바닥용 모르타르의 균열방지를 위한 실험적 연구)

  • 정재동;김진근;최응규;이칠성;이상순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.202-207
    • /
    • 1996
  • Recently, the mortar crack on floor is very serious in construction field, e.g. the crack due to plastic shrinkage and the crack due to drying shrinkage. To prevent this kind of crack, optimum mix propertions not only satisfying the required workability but also minimizing the unit water content were selected. And the expansion admixtures were used to compensate the shrinkage of mortar. This study shows that water/cement ratio used in construction field is about 64%. Even if we reduce water/cement ratio of mortar by the appropriate use the fine aggregate with high fineness modulus and superplastizer, floor mortar can have the required workability. The equations between mortar flow and water/cement ratio, sand/cement ratio, fineness modulus of fine aggregate were proposed in this study. And this equation may provide available mix proportions of floor mortar.

  • PDF

The Properties of the Super Flowing Concrete using manufactured sand (부순모래를 사용한 초류동 콘크리트의 배합특성)

  • 권영호;이상수;안재현;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.83-88
    • /
    • 1997
  • In this paper, we described the basic elements (relative flowing area ratio and funeling velocity ratio in mortar, flowability and self-compactibility in concrete, and etc.) required for the maximum mix design of the super flowing concrete (SFC) using manufactured sand. Also, manufactured sand and fly ash were used for investigating characteristics of SFC through various experiments (replacement ratio of manufactured sand, optimum mix condition) before producing the concrete in batch plant. As the result of this project, the SFC using manufactured sand up to 50% showed high flowability and self-compactibility in fresh concrete. Furthermore, its compressive strength is higher than normal concrete without manufactured sand. From now on, this study may suggest how to apply manufactured sand in the SFC.

  • PDF

A Study on the Performance Based Mix Design on Using Bottom Ash as Planting Concrete Aggregate through Applications of 6 Sigma Technique (6시그마 기법을 적용한 식재용 경량콘크리트 골재로서의 바텀애쉬 배합설계에 관한 실험적 연구)

  • Ahn, Hye-Ryeon;Oh, Jae-Hoon;Song, Yu-Mi;Huh, Young-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.247-250
    • /
    • 2012
  • As industrialization progresses is rapidly growing, the city of density and temperature is rising successively. It leads to the status of environmental issues. It is needed to develop process of planting concrete block using by Eco-materials for replacing to he existing rooftop light soil that imported. In this study, developing the process of planting lightweight block is researched on using applications of 6 Sigma technique. It makes process object improve standard by using statistical method. Also, there are suggestion that it is optimum mix design conditions and affection of experimental factors in matters of developing planting concrete block for rooftop greening.

  • PDF

A Study on the Appropriate Role of Solar Energy Considering Unstability of Depletable Energy Market (에너지 문제와 태양에너지의 역할)

  • Choi, Ki-Ryun
    • Solar Energy
    • /
    • v.12 no.2
    • /
    • pp.79-86
    • /
    • 1992
  • To assure the appropriate role of solar energy in the future energy mix scenarios, considering the inevitable volatile and unstable energy market, it is urgent to introduce the "Soft Energy Path" concept. In Korean energy situation, the "Soft Energy Path" concept of solar energy has to be assured by the optimum technology mix of appropriate scale and quality for their individual tasks, especially in the industrial sector. So, the solar society is requested to establish an conceptional innovation regarding the merits of soft energy path and of ultimate potential of solar energy.

  • PDF

Application of Performance Based Mixture Design (PBMD) for High Strength Concrete (고강도 콘크리트의 성능기반형 배합설계방법)

  • Kim, Jang-Ho Jay;Oh, Il Sun;Phan, Duc Hung;Lee, Keun Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.561-572
    • /
    • 2010
  • This paper is a study about application of recently proposed Performance Based Mixture Design (PBMD) for design of high strength concrete (HSC) to obtain HSC mix proportion that satisfies required performances. The PBMD method which uses Satisfaction curve based on a Bayesian method is a performance oriented concrete mix proportion design procedure easily applicable to any condition and environment for a possible replacement to the current prescriptive design standards. Based on extensive experimental results obtained for various materials and performance parameters of HSC, the application feasibility of the developed PBMD procedure for HSC has been verified. Also, the proposed PBMD procedure has been used to perform application examples to obtain desired target performances of HSC with optimum concrete mixture proportions using locally available materials, local environmental conditions, and available concrete production technologies. The validity and precision of HSC mix proportion design obtained using the PBMD method is verified with the experimental and ACI presented results to check the feasibility for actual design usage.

Strength Properties According to the Conditions of Low Carbon Inorganic Composite Using Industrial By-product (산업부산물을 사용한 저탄소 무기결합재의 조건별 강도특성)

  • Lee, Yun-Seong;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.1
    • /
    • pp.54-63
    • /
    • 2012
  • The purpose of this study is to examine the potential for reducing the environmental load and $CO_2$ gas when cement is produced by using cement substitutes. These substitutes consisted of blast furnace slag, red mud and silica fume, which were industrial by-products. The most optimum mix was derived when alkali accelerator was added to low carbon inorganic composite mixed with industrial by-product at room temperature. It is determined that hardened properties and the results of compressive strength tests changed based on CaO content, Si/Al, the mixing ratio and the amount of alkali accelerator, curing conditions and W/B. The results of test analysis suggest that the optimum mix of low carbon inorganic composite is CaO content 30%, Si/Al 4, the mixed ratio of alkali accelerator $(NaOH:Na_2SiO_3)$ 50g:50g, the amount of alkali accelerator 100g and W/B 31%. In addition, if contraction is complemented, low carbon inorganic composite with superior performance could be developed.