온톨로지 매칭 기술은 시맨틱 웹을 비롯한 여러 분야에서 중요한 기술 중 하나이다. 온톨로지 매칭은 두 개의 온톨로지를 입력으로 받고, 이를 몇 개의 매개변수로 구성된 특정 알고리즘을 이용하여 두 온톨로지 간의 매칭 관계를 알아내는 절차를 말한다. 온톨로지 매칭은 대용량 온톨로지의 통합이나, 지능화된 통합 검색의 구현 및 여러응용프로그램에 의한 도메인의 공유 등 여러 분야에서 유용하게 활용될 수 있다. 일반적으로 온톨로지 매칭의 성능은 온톨로지 매칭이 사용되는 환경과 관계없이 매칭 결과에 대한 측정만으로 평가되어 왔다. 따라서 대부분의 연구는 매칭 결과를 최적화하기 위해 매개변수를 조절하는 것에 집중하였다. 본 연구에서는 기존의 측정방법에 따른 높은 측정결과만을 목표로 하지 않고 온톨로지의 성격과 매칭 결과의 사용 목적에 따라 매개변수를 적절히 변화시켜야 한다는 점에 주목하고, 주어진 환경에 맞게 매개변수를 조정하는 방법론을 제안하고자 한다.
MPEG-H HEVC/ITU-T H.265는 quadtree 구조의 CU (Coding Unit)를 갖는 최신의 비디오 부호화 표준 기술이다. HEVC 부호화기는 모든 가능한 CU 구조에 대해서 Rate-distortion 최적화 과정을 통하여 최적 부호화 성능의 CU depth를 구할 수 있지만, 그 과정에 매우 많은 계산량을 필요로 한다. 본 연구에서는 컴퓨터 비젼 분야에서 잘 알려진 blob detection을 통하여 특징점을 찾는 과정이 저역 필터를 거치는 것과 같은 효과를 가진다는 것과 CU depth의 결정에는 영상의 고주파수 에너지 분포를 고려하는 것이 중요하다는 사실에 착안하여, blob detection 방법을 사용하여 추출된 특징점을 사용하여 HEVC 부호화기의 인트라 예측의 계산 복잡도를 낮추고자 한다. 실험을 통하여 all intra의 경우 0.45%의 BDBR 저하만으로 20% 정도의 부호화 시간을 절감할 수 있음을 보인다.
부호화율과 구속장을 선택적으로 지정할 수 있는 다중 표준용 파라미터화된 비터비 복호기의 효율적인 설계에 대해 기술한다. 설계된 비터비 복호기는 부호화율 1/2과 1/3, 구속장 7과 9를 지원하여 4가지 모드로 동작하도록 파라미터화된 구조로 설계되었으며, 각 동작모드에서 공통으로 사용되는 블록들의 공유가 극대화되는 회로구조를 적용하여 면적과 전력소모가 최소화되도록 하였다. 또한, one-point 역추적 알고리듬에 최적화된 ACCS (Accumulate-Subtract) 회로를 적용하였으며, 이를 통해 완전 병렬구조에 비해 ACCS 회로의 면적을 약 35% 감소시켰다. 설계된 비터비 복호기 코어는 0.35-um CMOS 셀 라이브러리로 합성하여 79,818 게이트와 25,600비트의 메모리로 구현되었으며, 70 MHz 클록으로 동작하여 105 Mbps의 성능을 갖는다. 설계된 비터비 복호기의 BER (Bit Error Rate) 성능에 대한 시뮬레이션 결과, 부호화율 1/3과 구속장 7로 동작하는 경우에 3.6 dB의 $E_b/N_o$에서 $10^{-4}$의 비트 오류율을 나타냈다.
LIDAR (LIght Detection And Ranging) is an active remote sensing technology which provides 3D coordinates of the Earth's surface by performing range measurements from the sensor. Early small footprint LIDAR systems recorded multiple discrete returns from the back-scattered energy. Recent advances in LIDAR hardware now make it possible to record full digital waveforms of the returned energy. LIDAR waveform decomposition involves separating the return waveform into a mixture of components which are then used to characterize the original data. The most common statistical mixture model used for this process is the Gaussian mixture. Waveform decomposition plays an important role in LIDAR waveform processing, since the resulting components are expected to represent reflection surfaces within waveform footprints. Hence the decomposition results ultimately affect the interpretation of LIDAR waveform data. Computational requirements in the waveform decomposition process result from two factors; (1) estimation of the number of components in a mixture and the resulting parameter estimates, which are inter-related and cannot be solved separately, and (2) parameter optimization does not have a closed form solution, and thus needs to be solved iteratively. The current state-of-the-art airborne LIDAR system acquires more than 50,000 waveforms per second, so decomposing the enormous number of waveforms is challenging using traditional single processor architecture. To tackle this issue, four parallel LIDAR waveform decomposition algorithms with different work load balancing schemes - (1) no weighting, (2) a decomposition results-based linear weighting, (3) a decomposition results-based squared weighting, and (4) a decomposition time-based linear weighting - were developed and tested with varying number of processors (8-256). The results were compared in terms of efficiency. Overall, the decomposition time-based linear weighting work load balancing approach yielded the best performance among four approaches.
상수관망 시스템(Water Distribution System, WDS)은 이용자에게 양질의 상수도를 공급하기 위해 구축된 사회기반시설물로써, 정수된 물이 사용처에 도달하기까지 송수과정에서 발생 가능한 수질저하를 고려해야 한다. 일반적으로 정수장에서 염소처리를 한 후, 도달시간을 고려한 시스템 내 잔류 염소농도를 유지함으로써 수질저하를 예방한다. 여기서 상수도 내 잔류 염소농도는 미생물 번식 및 관내 부식물 등 다양한 생물 화학적 오염을 효과적으로 예방하는 반면, 과다할 경우 이용자의 음용성을 저해할 수 있어 시스템 전반에 걸쳐 염소농도의 적절한 관리가 요구된다. 특히, 상수관망에서는 공급경로 및 공급량에 따라 각 수요처의 도달 염소농도가 다르게 분포할 수 있으므로, 시설운영자는 균등하고 적절한 염소농도를 유지하기 위해 추가적인 염소 재투입시설을 설치하여 함께 관리하고 있다. 이 때, 염소투입 시설의 운영계획은 EPANET과 같은 상수관망 해석모형의 수질모의를 바탕으로 수립된다. 그러나 일반적으로 수질모의는 수리해석과는 달리 긴 시간이 소요되는 단점이 존재한다. 본 연구에서는 이러한 단점을 개선하기 위해, 특정 네트워크의 수질모의 결과를 학습시킨 인공신경망(ANN) 모형을 구축하고 이를 이용하여 상수관망 수질모의 계산시간을 단축하고자 하였다. 여기서 ANN모형의 학습은 EPANET을 통해 미리 선정된 다양한 염소 투입지점의 염소 투입농도와 용수 공급량 자료, 그리고 주요 관측지점에서 측정된 염소농도자료를 이용하였다. 학습된 ANN모형을 EPANET 수질모의 결과와 비교 및 검증을 실시한 결과, 사전에 소요된 학습시간을 제외하면 수질모의 소요시간 측면에서 큰 개선효과를 보였으며, 대표지점에서의 수질모의 결과가 유사하였다. 추가적으로, 본 연구에서는 학습된 ANN모형과 최적화 알고리즘인 GA(Genitic Algorithm)를 연계하여 상수관망에서의 염소 재투입 스케줄링을 최적화하는 프로그램을 개발함으로써, 안전하고 경제적인 상수관망의 수질운영에 기여하고자 하였다.
This paper introduces the existence of purchase dependence that was identified during the analysis of inventory operations practice at a sales agency of dealing with spare parts for ship engines and generators. Purchase dependence is an important factor in designing an inventory replenishment policy. However, it has remained mostly unaddressed. Purchase dependence is different from demand dependence. Purchase dependence deals with the purchase behavior of customers, whereas demand dependence deals with the relationship between item-demands. In order to deal with purchase dependence in inventory operations practice, this paper proposes (Q, r) models with the consideration of purchase dependence. Through a computer simulation experiment, this paper compares performance of the proposed (Q, r) models to that of a (Q, r) model ignoring purchase dependence. The simulation experiment is conducted for two cases : a case of using a lost sale cost and a case of using a service level. For a case of using a lost sale cost, this paper calculates an order quantity, Q and a reorder point, r using the iterative procedure. However, for a case of using a service level, it is not an easy task to find Q and r. The complexity stems from the interactions among inventory replenishment policies for items. Thus, this paper considers the genetic algorithm (GA) as an optimization method. The simulation results demonstrates that the proposed (Q, r) models incur less inventory operations cost (satisfies better service levels) than a (Q, r) model ignoring purchase dependence. As a result, the simulation results supports that it is important to consider purchase dependence in the inventory operations practice.
The yield criterion, or called yield function, plays an important role in the study of plastic working of a sheet because it governs the plastic deformation properties of the sheet during plastic forming process. In this paper, we propose a modified version of previous anisotropic yield function (Trans. Mater. Process., 31(4) 2022, pp. 214-228) based on J2 and J3 stress invariants. The proposed anisotropic yield model has the 6th-order of stress components. The modified version of the anisotropic yield function in this study is as follows. f(J20,J30) ≡ (J20)3 + α(J30)2 + β(J20)3/2 × (J30) = k6 The proposed anisotropic yield function well explains the anisotropic plastic behavior of various sheets such as aluminum, high strength steel, magnesium alloy sheets etc. by introducing the parameters α and β, and also exhibits both symmetrical and asymmetrical yield surfaces. The parameters included in the proposed model are determined through an optimization algorithm from uniaxial and biaxial experimental data under proportional loading path. In this study, the validity of the proposed anisotropic yield function was verified by comparing the yield surface shape, normalized uniaxial yield stress value, and Lankford's anisotropic coefficient R-value derived with the experimental results. Application for the proposed anisotropic yield function to AA6016-T4 aluminum and DP980 sheets shows symmetrical yielding behavior and to AZ31B magnesium shows asymmetric yielding behavior, it was shown that the yield locus and yielding behavior of various types of sheet materials can be predicted reasonably by using the proposed anisotropic yield function.
본 연구에서는 상용 니켈-알루미나 촉매를 이용한 메탄가스-수증기 개질반응에서의 고유반응속도 상수를 결정하였다. 반응메커니즘을 반영하기 위해 Langmuir-Hinshelwood chemisorption 이론에 기반한 반응속도식을 사용하였고 반응온도($630{\sim}750^{\circ}C$) 및 반응물의 분압(S/C ratio = 2.7~3.5)을 실험변수로 설정하였다. 실험을 통해 얻어진 데이터를 기반으로 효율적인 최적화 알고리즘을 이용하여 최적 고유반응속도상수들을 결정하였다. 최종적으로 제안된 이 수학적 반응 모델은 촉매반응기의 설계 및 운전조건 최적화에 활용 가능하다.
본 연구에서는 전기 자동차의 주요 부품 중 하나인, Battery Module의 품질 Issue 및 부품특성 개선을 위해 복합재료를 사용하여 구조보강 하였으며, 단일소재의 단점을 극복할 수 있는 Hybrid 개념의 기구 구조 최적화를 수행하고 성능을 비교하였다. 이를 위해 고전 적층 판 이론(Classical Laminated Plate Theory, CLPT)에 따른 복합재료 주요 설계 변수 도출 및 복합재료 물성 예측 알고리즘에 대해 연구하였으며, 설계된 복합재료의 기계적 물성을 바탕으로 유한요소해석(FEM)을 통해 Battery Module의 성능을 검증하였다. 이를 통해 자동차 Battery 부품의 안정성 및 경량화 등의 부품 특성 개선 여부를 확인할 수 있었다. 최종적으로 검증결과에 따르면 Selective Composite Patch로 보강된 Hybrid Battery Module은 기존 Al Battery Module에 비해 30%의 중량 감소 및 제품 두께 32.5%를 줄일 수 있고, 충격 성능 유지 등 Hybrid 구조의 장점을 입증하였다.
기존 환경측정기기는 전자파 및 친환경 제품 인증, 내구성 시험 위주이며, 센서 신뢰성 검증 및 측정 데이터에 대한 검증은 형식 승인 및 등록, 인수시험, 초기교정, 주기시험 등을 통해 센서 성능평가 위주로 수행된다. 본 플랫폼은 각 타겟 센서별 성능평가 뿐만 아니라 센서의 데이터 신뢰성에 대한 검증체계 지원 ICT 기반 환경 모니터링 센서 신뢰성 검증 체계를 구축하였다. 환경 정보에 대한 센서 데이터를 수집할 센서보드를 제작하였고 센서 및 데이터 신뢰성 평가 및 검증 서비스 체계를 규격화 하였다. 또한, ICT 기반 센서 데이터 신뢰성 평가 및 검증을 위해 LoRa 통신을 이용한 센서 데이터 플랫폼 모니터링 프로토타입을 제작하였고 이를 스마트 시티 등에 실증 테스트하였다. 해당 시스템을 통해 받은 데이터 분석을 위해 머신러닝을 이용하여 최적화 알고리즘 개발하였다. 이를 통해 신뢰성 검증을 위한 센서 빅데이터 분석시스템을 구축하였고 통합 평가 및 검증 시스템의 기반을 마련하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.