Browse > Article
http://dx.doi.org/10.9713/kcer.2018.56.6.914

Kinetic Model of Steam-Methane Reforming Reactions over Ni-Based Catalyst  

Lee, HongJin (Hydrogen Laboratory, Korea Institute of Energy Research)
Kim, Woohyun (Hydrogen Laboratory, Korea Institute of Energy Research)
Lee, Kyubock (Graduate School of Energy Science and Technology, Chungnam National University)
Yoon, Wang Lai (Hydrogen Laboratory, Korea Institute of Energy Research)
Publication Information
Korean Chemical Engineering Research / v.56, no.6, 2018 , pp. 914-920 More about this Journal
Abstract
The intrinsic kinetic parameters of steam-methane reforming reactions over commercial nickel-based catalyst were determined. The reaction rate equations were derived from the reaction mechanism-based Langmuir-Hinshelwood chemisorption theory. As the experimental variables for the kinetic study, the reaction temperature ranged from 630 to $750^{\circ}C$ and the steam-to-carbon ratio also varied from 2.7 to 3.5. Based on the experimental data, the efficient optimization algorithm was used to determine the intrinsic kinetic parameters due to the high-dimensional objective function. It is confirmed that the parameter estimation results showed good agreement with the experimental values. Thus, this proposed mathematical reaction model can be used as the basic information to design a catalytic reactor and to optimize operating conditions.
Keywords
Steam-methane reforming; $Ni/Al_2O_3$ catalyst; Intrinsic kinetic; Hydrogen; Parameter estimation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Soliman, M. A., Adris, A. M., Al-Ubaid, A. S. and Elnashaie, S. S. E. H., "Intrinsic Kinetics of Nickel/Calcium Aluminate Catalyst for Methane Steam Reforming," J. Chem. Techol. Biotechnol., 55(2), 131-138(1992).
2 Elnashaie, S. S. E. H., Adris, A. M., Soliman, M. A. and Al- Ubaid, A. S., "Digital Simulation of Industrial Steam Reformers for Natural Gas Using Heterogeneous Models," Can. J. Chem. Eng., 70(4), 786-793(1992).   DOI
3 Elnashaie, S. S. E. H. and Abashar, M. E. E., "Steam Reforming and Methanation Effectiveness Factors Using the Dust Gas Model under Industrial Conditions," Chem. Eng. Process., 32(3), 177-189(1993).   DOI
4 Ding, Y. and Alpay, E., "Adsorption-Enhanced Steam-Methane Reforming," Chem. Eng. Sci., 55(18), 3929-3940(2000).   DOI
5 Egea, J. A., Vries, D., Alonso, A. A. and Banga, J. R., "Global Optimization for Integrated Design and Control of Computationally Expensive Process Models," Ind. Eng. Chem. Res., 46(26), 9148-9157(2007).   DOI
6 Mansoornejad, B., Mostoufi, N. and Jalali-Farahani, F., "A Hybrid GA-SQP Optimization Technique for Determination of Kinetic Parameters of Hydrogenation Reactions," Comput. Chem. Eng., 32(7), 1447-1455(2007).   DOI
7 Pacheco, M., Sira, J. and Kopasz, J., "Reaction Kinetics and Reactor Modeling for Fuel Processing of Liquid Hydrocarbons to Produce Hydrogen: Isooctane Reforming, " Appl. Catal. A: Gen., 250(1), 161-175(2003).   DOI
8 Michailos, S., "Kinetic Modelling and Dynamic Sensitivity Analysis of a Fast Pyrolysis Fluidised Bed Reactor for Bagasse Exploitation," Biofuels, Available online (2018).
9 Kim, D. H. and Lee, T. J., "Kinetics of Methane Steam Reforming," Korean Chem. Eng. Res., 29(4), 396-406(1991).
10 Numaguchi, T. and Kikuchi K., "Intrinsic Kinetics and Design Simulation in a Complex Reaction Network; Steam-Methane Reforming," Chem. Eng. Sci., 43(8), 2295-2301(1988).   DOI
11 Hoang, D. L., Chan S. H. and Ding, O. L., "Kinetic and Modelling Study of Methane Steam Reforming Over Sulfide Nickel Catalyst on a Gamma Alumina Support," Chem. Eng. Sci., 112(1-3), 1-11(2005).   DOI
12 Sauk, J. K., Shul, Y. G., Jung, D. H., Kim, C. H., Shin, D. R. and Yang, J. C., "Effect of Crossover on the Performance of Direct Methanol Fuel Cell(DMFC)," Korean Chem. Eng. Res, 37(1), 21-26(1999).
13 Yoon, W. L., Park, J. W., Rhee, Y. W., Han, M. W., Jeong, J. H., Park, J. S., Jung, H., Lee, H. T. and Kim, C. S., "Operating Characteristics of Integrated NG Reformer System for 5 kW Class PEM Fuel Cell," Korean Chem. Eng. Res., 41(3), 389-396(2003).
14 Rostrup-Nielsen, T., "Manufacture of Hydrogen," Catal. Today, 106(1-4), 293-296(2005).   DOI
15 Barelli, L., Bidini, G., Gallorini, F. and Servili, S., "Hydrogen Production Through Sorption-Enhanced Steam Methane Reforming and Membrane Technology: A Review," Energy, 33(4), 554-570(2008).   DOI
16 Oliveira, E. L. G., Grande, C. A. and Rodrigues, A. E., "Steam Methane Reforming in a $Ni/Al_2O_3$ Catalyst: Kinetics and Diffusional Limitations in Extrudates," Can. J. Chem. Eng., 87(6), 945-956(2009).   DOI
17 https://unfccc.int/process-and-meetings/the-paris-agreement/theparis-agreement.
18 Oliveira, E. L. G., Grande, C. A. and Rodrigues, A. E., "Methane Steam Reforming in Large Pore Catalyst," Chem. Eng. Sci., 65(5), 1539-1550(2010).   DOI
19 Park, J. E., Park, J. H., Yim, S. D., Kim, C. S. and Park, E. D., "A Comparative Study of Commercial Catalysts for Methanol Steam Reforming," Korean Chem. Eng. Res., 49(1), 21-27(2011).   DOI
20 Avraam, D. G., Halkides, T. I., Liguras, D. K., Bereketidou, O. A. and Goula, M. A., "An Experimental and Theoretical Approach for the Biogas Steam Reforming Reaction," Int. J. Hydrog. Energy, 35(18), 9818-9827(2010).   DOI
21 Maier, L., Schadel, B., Delgado H. K., Tischer, S. and Deutschmann, O., "Steam Reforming of Methane Over Nickel: Development of a Multi-Step Surface Reaction Mechanism", Top. Catal., 54(13-15), 845-858(2011).   DOI
22 Baek, S. M., Kang, J. H., Lee, K. J. and Nam, J. H., "A Numerical Study of the Effectiveness Factors of Nickel Catalyst Pellets Used in Steam Methane Reforming for Residential Fuel Cell Applications," Int. J. Hydrog. Energy, 39(17), 9180-9192(2014).   DOI
23 Won, J. M., Park, G. W., Lee, J. W. and Hong S. C., "Study on Effects of $Ni/Al_2O_3$ Catalysts Added with Mo on Durability Improvement in Steam Reforming Reactions," Korean Chem. Res., 54(4), 560-567(2016).   DOI
24 Abbas, S. Z., Dupont, V. and Mahmud, T., "Kinetics Study and Modelling of Steam Methane Reforming Process over a $NiO/Al_2O_3$ Catalyst in an Adiabatic Packed Bed Reactor", Int. J. Hydrog. Energy, 42(5), 2889-2903(2017).   DOI
25 Akers, W. W. and Camp, D. P., "Kinetics of the Methane-Steam Reaction," AIChE J., 1(4), 471-475(1955).   DOI
26 Ross, J. R. H. and Steel, M. C. F., "Mechanism of the Steam Reforming of Methane over a Coprecipitated Nickel-Alumina Catalyst," J. Chem. Soc. Faraday Trans. 1, 69, 10-21(1973).
27 Rostrup-Nielsen, J. R., "Activity of Nickel Catalysts for Steam Reforming of Hydrocarbons," J. Catal., 31(2), 173-199(1973).   DOI
28 De Deken, J. C., Devos, E. F. and Froment, G. F., "Steam Reforming of Natural gas: Intrinsic Kinetics, Diffusional Influences, and Reactor Design, " Chem. Reaction Eng. Boston., 196(16), 181-197 (1982).
29 Quach, T. Q. P. and Rouleau, D., "Kinetics of Methane-Steam Reaction Over Nickel Cataylst in a Continuous Stirred Tank Reactor," J. Appl. Chem. Biotechnol., 25(6), 445-459(1975).   DOI
30 Munster, P. and Grabke, H. J., "Kinetics of the Steam Reforming of Methane with Iron, Nickel, and Iron-Nickel Alloys as Catalysts," J. Catal., 72(2), 279-287(1981).   DOI
31 Xu, J. and Froment, G. F., "Methane Steam Reforming, Methanation and Water-Gas Shift: I. Intrinsic Kinetics," AIChE J, 35(1), 88-96(1989).   DOI
32 Ko, K. D., Lee, J. K., Park, D. K. and Shin S. H., "Kinetics of Steam Reforming Over a Ni/Alumina Catalyst," Korean Chem. Res., 12(4), 478-480(1995).   DOI
33 Hou, K. and Hughes, R., "The Kinetics of Methane Steam Reforming Over a $Ni/{\alpha}-Al_2O$ Catalyst," Chem. Eng. J., 82(1-3), 311-328 (2001).   DOI
34 Zeppieri, M., Villa, P. L., Verdone, N., Scarsella, M. and Filippis, P. D., "Kinetic of Methane Steam Reforming reaction Over nickel- and Rhodium-Based Catalysts," Appl. Catal. A-Gen., 387(1-2), 147-154(2010).   DOI
35 Jakobsen, J. H., Jakobsen, M., Chorkendorff, I. and Sehested, J., "Methane Steam Reforming Kinetics for a Rhodium-Based Catalyst," Catal. Lett., 140(3-4), 90-97(2010).   DOI
36 Elnashaie, S. S. E. H., Adris, A. M., Al-Ubaid, A. S. and Soliman, M. A., "On the Non-Monotonic Behaviour of Methane-Steam Reforming Kinetics," Chem. Eng. Sci., 45(2), 491-501(1990).   DOI
37 Pantoleontos, G., Kikkinides, E. S. and Georgiadis, M. C., "A Heterogeneous Dynamic Model for the Simulation and Optimization of the Steam Methane Reforming Reactor," Int. J. Hydrog. energy, 37(21), 16346-16358(2012).   DOI