• Title/Summary/Keyword: Optimization Methods

Search Result 2,825, Processing Time 0.036 seconds

An enhanced simulated annealing algorithm for topology optimization of steel double-layer grid structures

  • Mostafa Mashayekhi;Hamzeh Ghasemi
    • Advances in Computational Design
    • /
    • v.9 no.2
    • /
    • pp.115-136
    • /
    • 2024
  • Stochastic optimization methods have been extensively studied for structural optimization in recent decades. In this study, a novel algorithm named the CA-SA method, is proposed for topology optimization of steel double-layer grid structures. The CA-SA method is a hybridized algorithm combining the Simulated Annealing (SA) algorithm and the Cellular Automata (CA) method. In the CA-SA method, during the initial iterations of the SA algorithm, some of the preliminary designs obtained by SA are placed in the cells of the CA. In each successive iteration, a cell is randomly chosen from the CA. Then, the "local leader" (LL) is determined by selecting the best design from the chosen cell and its neighboring ones. This LL then serves as the leader for modifying the SA algorithm. To evaluate the performance of the proposed CA-SA algorithm, two square-on-square steel double-layer grid structures are considered, with discrete cross-sectional areas. These numerical examples demonstrate the superiority of the CA-SA method over SA, and other meta-heuristic algorithms reported in the literature in the topology optimization of large-scale skeletal structures.

A Study on the Comparison of Performances Between Direct Method and Approximation Method in Structural Optimization (구조최적설계시 직접법 및 근사법 알고리즘의 성능 비교에 관한 연구)

  • 박영선;이상헌;박경진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.313-322
    • /
    • 1994
  • Structural optimization has been developed by two methods. One is the direct method which applies the Nonlinear Programming (NLP) algorithm directly to the structural optimization problem. This method is known to be very excellent mathematically. However, it is very expensive for large-scale problems due to the one-dimensional line search. The other method is the approximation method which utilizes the engineering senses very well. The original problem is approximated to a simple problem and an NLP algorithm is adopted for solving the approximated problems. Practical solutions are obtained with low cost by this method. The two methods are compared through standard structural optimization problems. The Finite element method with truss and beam elements is used for the structural and sensitivity analyses. The results are analyzed based on the convergence performances, the number is function calculations, the quality of the cost functions, and etc. The applications of both methods are also discussed.

An Empirical Comparison of Initialization Methods for Holt-Winters Model with Railway Passenger Demand Data (철도여객수요예측을 위한 Holt-Winters모형의 초기값 설정방법 비교)

  • 김성호;홍순흠
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.97.1-103
    • /
    • 2001
  • Railway passenger demand forecasts may be used directly, or as inputs to other optimization model which is use the demand forecasts to produce estimates of other activities. The optimization models require demand forecasts at the most detailed level. In this environment exponential smoothing forecasting methods such as Holt-Winters are appropriate because it is simple and inexpensive in terms of computation. There are several initialization methods for Holt-Winters Model. The purpose of this paper is to compare the initialization methods for Holt-Winters model.

  • PDF

Evaluation of the Simulation Optimization Tool, SIMICOM

  • Lee, Young-Hae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.13 no.1
    • /
    • pp.61-67
    • /
    • 1987
  • A tool for optimizing simulated discrete variable stochastic systems, SIMICOM was developed and presented in [5]. In this paper an evaluation of its performance and results of comparisons with other popular methods for dealing with simulation-optimization problems will be provided. Based on several test problems it is concluded that SIMICOM dominates those methods.

  • PDF

A teaching learning based optimization for truss structures with frequency constraints

  • Dede, Tayfun;Togan, Vedat
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.833-845
    • /
    • 2015
  • Natural frequencies of the structural systems should be far away from the excitation frequency in order to avoid or reduce the destructive effects of dynamic loads on structures. To accomplish this goal, a structural optimization on size and shape has been performed considering frequency constraints. Such an optimization problem has highly nonlinear property. Thus, the quality of the solution is not independent of the optimization technique to be applied. This study presents the performance evaluation of the recently proposed meta-heuristic algorithm called Teaching Learning Based Optimization (TLBO) as an optimization engine in the weight optimization of the truss structures under frequency constraints. Some examples regarding the optimization of trusses on shape and size with frequency constraints are solved. Also, the results obtained are tabulated for comparison. The results demonstrated that the performance of the TLBO is satisfactory. Additionally, TLBO is better than other methods in some cases.

An Empirical Comparison among Initialization Methods of Holt-Winters Model for Railway Passenger Demand Forecast (철도여객수요예측을 위한 Holt-Winters모형의 초기값 설정방법 비교)

  • 최태성;김성호
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.9-13
    • /
    • 2004
  • Railway passenger demand forecasts may be used directly, or as inputs to other optimization models use them to produce estimates of other activities. The optimization models require demand forecasts at the most detailed level. In this environment exponential smoothing forecasting methods such as Holt-Winters are appropriate because it is simple and inexpensive in terms of computation. There are several initialization methods for Holt-Winters Model. The purpose of this paper is to compare the initialization methods for Holt-Winters model.

Study on Integrated Workflow for Designing Sustainable Tall Building - With Parametric method using Rhino Grasshopper and DIVA for Daylight Optimization

  • Kim, Hyeong-ill
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.21-28
    • /
    • 2016
  • Purpose: The Objective of this study is to explore the capabilities of an integrated modelling and simulation workflow when applied to an experiment-based research process, aimed at deriving daylight optimization strategies specific to tall buildings. Methods: Two methods were devised to apply this workflow with the help of DIVA and Rhino/Grasshopper. The first method is a multiple variant analysis by setting up an appropriate base case and analysing its daylight and energy performance, forming the basis of comparison for subsequent cases for design variants. The second method involved setting up the base case within a site context and conducting a solar irradiation study. An architectural variables such as overhang and shading device, were then defined as inputs in the parametric definition in Grasshopper to control the selected variable. Results: While the first method took advantage of the speed and efficiency of the integrated workflow, the second method was derived based on the ability to directly process simulation data within the integrated, single-software platform of the proposed workflow. Through these methods, different architectural strategies were explored, both to increase daylight penetration and to reduce radiant heat gain. The focus is on methods by which this workflow can be applied to facilitate the experimental derivation of daylight optimization strategies that are specific to tall building design.

Structural Design of a Container Crane Part-Jaw, Using Metamodels (메타모델을 이용한 크레인 부품 조의 구조설계)

  • Song, Byoung-Cheol;Bang, Il-Kwon;Han, Dong-Seop;Han, Geun-Jo;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.17-24
    • /
    • 2008
  • Rail clamps are mechanical components installed to fix the container crane to its lower members against wind blast or slip. According to rail clamps should be designed to survive harsh wind loading conditions. In this study, a jaw structure, which is a part of a wedge-typed rail clamp, is optimized with respect to its strength under a severe wind loading condition. According to the classification of structural optimization, the structural optimization of a jaw is included in the category of shape optimization. Conventional structural optimization methods have difficulties in defining complex shape design variables and preventing mesh distortions. To overcome the difficulties, the metamodel using Kriging interpolation method is introduced to replace the true response by an approximate one. This research presents the shape optimization of a jaw using iterative Kriging interpolation models and a simulated annealing algorithm. The new Kriging models are iteratively constructed by refining the former Kriging models. This process is continued until the convergence criteria are satisfied. The optimum results obtained by the suggested method are compared with those obtained by the DOE (design of experiments) and VT (variation technology) methods built in ANSYS WORKBENCH.

  • PDF

New Techniques for Optimal Treatment Planning for LINAC-based Stereotactic Radiosurgery (LINAC 뇌정의적 방사선 수술시 새로운 최적 선량분포계획 시스템의 개발)

  • Suh Tae-suk
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.95-100
    • /
    • 1992
  • Since LINAC-based stereotactic radiosurgery uses multiple noncoplanar arcs, three-dimensional dose evaluation and many beam parameters, a lengthy computation time is required to optimize even the simplest case by a trial and error. The basic approach presented in this paper is to show promising methods using an experimental optimization and an analytic optimization The purpose of this paper is not to describe the detailed methods, but introduce briefly, proceeding research done currently or in near future. A more detailed description will be shown in ongoing published papers. Experimental optimization is based on two approaches. One is shaping the target volumes through the use of multiple isocenters determined from dose experience and testing. The other method is conformal therapy using a beam's eye view technique and field shaping. The analytic approach is to adapt computer-aided design optimization in finding optimum irradiation parameters automatically.

  • PDF