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Abstract

A tool for optimizing simulated discrete variable stochastic systems, SIMICOM was developed
and presented in [S]. In this paper an evaluation of its performance and results of comparisons with
other popular methods for dealing with simulation-optimization problems will be provided. Bas-
ed on several test problems it is concluded that SIMICOM dominates those methods.

1. Introduction

A heuristic algorithm(SIMICOM) has been designed for optimizing simulated stochastic
systems whose performances are functions of several discrete decision variables[1]. The approach
adopted utilizes an integer complex method coupled with techniques of establishing confidence
intervals for the system’s responses.

It can handle a general class of optimization problems using computer simulation that could be
constrained or unconstrained. In constrained cases, the constraints could either be explicit
analytical functions of decision variables or be expressed as other responses of the simulation
model. It also considered the economic aspect of obtaining the solution in addition to get a
reasonably accurate solution. In this paper the comparative results of the proposed method with
two other methods, Integer Gradient Search Method and Random Search Method based on several
known stochastic functions and simulation models are demonstrated.

2. Test Problems

To evaluate the performance of the proposed method, five known stochastic functions (some
from[4})and two simulation models[2, 6] in Table 1 were used as test battery.

2.1 Unconstrained Problems

In this case bound constraints for each problem were selected as follows:
For problems 1, #2, #3, #4

-25= x, <50, i=1,2
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For problems #5
-25< x, <50, i=1,2,3,4
For problem #6

1<x,<12

1<zx,<15

1<x,<10

1<x,<5
For problem #7 the unconstrained version is trivial because of the nature of the problem.
Thus, only the contrained one is considered. Each alternative point in problem $#1
through #5 was evaluated with noise function, e, where ¢, is normally distributed with a
mean of zero and a standard deviation of 100. Run lengths, 60, 100,20 are used as initial, ter -
minal and incremental run length respectively for SIMICOM. Run length 100 is used for
other methods. Note that this creates an advantage for other methods because the ave-
rage run length used by SIMICOM will be smallerthan 100. However, as will be shown,
even with this disadVantage SIMICOM performs better than those methods.

Table 1. Several stochastic functions and Models for Testing

problem function or model optimum ‘f’:rllc’ﬁo‘zfa‘:t(’,j:f;i‘:
#1 (xt/2 —8) '+ (x,—12) *+e, (16, 12) 0
#2 { i +x, —11) ' (x, +xF— 7 )%} 1 /3+e (3, 2) 0
#3 {x, —x}) 1+ (1 —x,) % *+e (1, 1) 0
#4 {Ox2+2xF—11) 4+ Bx, +H4x7— 7 )% 44| (1, 1), (1,-1) 0
#5 {06 +10%,) 2+ 5 (6 —x) 2+ (6, — 2 %) * (0. 0. 0, 0) 0
+10 (x, —x,) *t / 18+¢,
#$6 robotic manufacturing cell model in (6] unknown unknown
&7 flexible manufacturing system modelin (2] unknown unknown

2.2 Constrained Problems
To build constrained problems, the following constraints were imposed on each problem:

For problem #1, #2, #3, #4
1<x,<50, i=1, 2
x+x,<70
(%, —-23)2+ (x, —23)2+e, <800
For problem #5
1<x,<25, i=1,2,3,4
3x,+x,+x,+4x,<100
(2, —10)?2+(x,—10) 24 (x; —10)% + (x, — 10) 2 +-¢,<300
Each point in problems # 1 through # 5 was evaluated with noise functions, e, and e, where



e, is the same noise function as in the unconstrained problem and e, is normally distributed with a
mean of zero and a standard deviation of 20.
For problem #6
1<x,<10
1<x,<8
1<x,<12
1<x,<3
2x,4+3x,+x,+5x,<45
Expected production rate per hour > 50 units
For problem #7
1<x,<10
1<x,<10
1<x,<10
1<x,<10
1<x,<20
x,+1.5x,+2x,+3x, <50
Expected utilization of machines > 0.6

3. Selected Methods

To evaluate the power of SIMICOM, its performance was compared to those of Integer
Gradient Method(INGR) and Random Search Method(RAN). The reason for this choice is that
these methods are the most often used techniques by analysts to solve discrete optimization
problem.

3.1 Integer Gradient Search Method(INGR)

The gradient search method for the continuous variable problem has been modified in[4] for
unconstrained nonlinear integer programming problems. Among the available versions of the
Integer Gradient Method, the two-sided gradient approximation has been applied to the discrete
problems under study. The summary of the procedure used is as follows:

A two-sided gradient approximation at the current point is used to determine a search
direction similar to those for continuous variable techniques. The only difference is that the
gradient is approximated by evaluating discrete points. The search direction generated is then
transformed into an integer direction which contains discrete points. Next, a one—dimensional
search is applied to locate an optimum point along this direction. Sometimes a premature
termination may result when the search overshoots the optimum.In this case, a subsequent
search is initiated to overcome this difficulty. In this search several points in the vicinity of the
current point, that are not precisely on the line of search, are evaluated. The details ot this
process are given in [4]. Finally the search is terminated when nobetter point can be found in
the integer gradient direction.

The starting point used for Integer Gradient Search is the same point that is found by
SIMICOM via a uniform search. This is an advantage for INGR because the capabilities of
SIMICOM in finding the starting point has been used in INGR’s favor. Instead, the number of
simulation runs for finding the starting point is charged to INGR.



3.2 Random Search Method(RAM)

There are several variations of this technique. The simplest one is to choose at random a
number of sets of values for controllable variables and hope one of them will provide the optimum
response. The procedure used here is as follows. Using the ranges from the bound constraints, a
feasible value for each variable is selected at random. If the problem is constrained, before running
- the simulation model the randomly selected alternative point is tested for its feasibility with respect
to the explicit constraints. If this point satisfies all the explicit constraints, then the simulation
model is run using this point and the system responses are obtained. Otherwise, this point is
dropped and another point is picked at random. If implicit constraints exist, after obtaining system
responses, they are checked against these constraints. If the point satisfies all the implicit
constraints, then its response for the objective function is compared with current optimal value for
the objective function. If the result is better, the new point is selected as the new optimum.
Otherwise the old optimum is retained and the procedure is repeated.

The number of simulation runs and the starting point for Random Search Method(RAN), are
the same as those used in applying SIMICOM. The sequential procedure for running the simulation
model discussed in [5] is adopted for economical use of computer time.

4. Gain Function

Although in both SIMICOM and INGR algorithms the user specifies the maximum number of
simulation runs, the number of simulation runs used cannot be controlled. For this reason, for
each optimum obtained a gain function similar to the one used in [3] is defined as follows:

G= | (Rf-Rs)/ { N(Ro—Rs)} |

Where

G=Gain per simulation run in terms of the ratio of the achieved improvement to the possible
improvement.

Rf=The true response found as optimum by the search method.

Rs=The true response at the starting point

Ro=The true response at the real optimum

N=Number of Simulation Runs(Simulated Alternatives)

Since in real simulated systems the real optimum is unknown, the definition of the gain
function is modified as:

G== | (Rf-Rs)/N |
5. Comparative Results

The results for the test problems are shown in Tables 2 through 5. From these Tables following
observations can be made.

(1) The gain by SIMICOM is larger than that of INGR for all problems. The ratio of gain by

'SIMICOM to gain by INGR ranges from 1.038 for problem #7 to about 21.37 for problem

#2 unconstrained(See Table 2). From Tables 3 and 4 it is seen that in all cases SIMICOM

has found better solutions than the ones found by INGR.And in one case INGR has not
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found a better solution than even the starting point.

(2) By looking at Tables 2, 3 and 5 it is found that in eleven cases out of thirteen SIMICOM
has found better solutions than the ones found by RAN. In four of the cases RAN has not
made any improvements even after using a number of simulation runs equal to those
used by SIMICOM. The fact that Random Search obtained better gains than SIMICOM in
a few cases requires an explanation. In the preceding tables inconsistency of the random
search is demonstrated through its range of performance(See Table 2). This inconsistency
may sometimes result in a better than expected result. However, this happens by chance
only and could not be considered an advantage, because one will never be able to trust the
result.

According to the results for the problems used, one can conclude that SIMICOM is more

reliable than Integer Gradient Method and Random Search Method.

Table2 . Comparison of Results by SIMICOM, INGR and RAN

Problem Gl G2 G3 Gl /G2 G1/G3
#1U - 0500 - 0000 - 0000 oo o
C - 0712 - 0647 - 0598 1.100 1.130
#2U - 0577 - 0027 - 0000 21.37 o
C - 0615 - 0585 - 0662 1.051 - 9290
#3U - 0827 - 0503 - 0766 1.644 1.079
C - 1637 - 0766 - 1643 2.137 - 9963
#4U - 0769 - 0355 - 0000 2.166 o
C - 0498 - 0466 - 0493 1.068 1.010
#5U - 0270 - 0189 - 0000 1.428 0
C - 0436 - 0319 - 0182 1.367 2.396
#6U - 0232 - 0184 - 0018 1.261 12.88
C - 0250 - 0123 - 0057 2.032 4.386
#7C 1716 - 1653 - 1433 1,038 1.197

G1:Gain by SIMICOM
G2:Gain by INGR
G3:Gain by RAN

U :Unconstrained Problem
C :Constrained Problem




Table 3.

Optima Found by SIMICOM for Test Problems

prob. Xs Rs Xo Ro Xf Rf N G
#1U (12, 12) 4.00 (16, 12) 0 (18, 12) 1.00 | 15| - 0500
C @5, 25) 325.25 (16, 12) 0 (15, 13) 1.25 [ 14 | - 0712
#2U (12, 12) 69. 30 (3, 2) 0 (=5, —5) 5,27 {16 | - 0577
C (25, 25) 302.17 (4, 3) 3.33 (7, 8) 26.27 {15 | -0615
#3U (12, 12) 132.46 11, 1), I, —1) 0 (0, 6) 1.00 | 12| - 0827
C (25, 25) 600. 48 (2, 5) 1.41 (1, 13) 12.00 | 6 | - 1637
#$#4U (12, 12) 1685.3 (1, 1) Q (1, 1) 0.00 [ 13| - 0769
C 25, 25) 7328.6 | (3, 4) 121.49 (3, 5) 157.5 | 20| -0498
#5U (12,12, 12 12) |2120.0 {(0, 0,0, 0) 0 (-1,0,-1,-1) -94 (371 -0270
Cc 7,7, 7) |46277 |(2,1,1,3) 9.71(2,2,2,2) | 27.78 | 22| -0436
#6U ((6,8,5, 3) 11.72 - - (10,10,6,4) | 10.93 | 34| -0232
C {(5,4,6,2) | 13.33 - - ((5,4,4,2) | 12.63 (28| -0250
#7C | 6.5,55,10) 19.73 - - (7.3,3,7,5) 11.49 { 48] - 1716
% X : Starting point
X, : Optimum found
X, : True optimum
Table 4. Optima Found by INGR for Test Problems
Prob, Xs Rs Xo Ro Xt Rf |N G
#1U (12, 12) 4.00 (16, 12) 0 (12, 12) 4,00 [ 19 - 0000
C (25, 25) 325. 25 {16, 12) 0 (15, 15) 9.25 | 15| -0647
#2U (12, 12) 69. 30 (3, 2) 0 (14, 7) 66.67 | 14 | - 0027
C (25, 25) 302.17 (4, 3) 3.33 (5, 15) 74.96 | 13 | - 0585
#3U 12, 12) |132.46 |(LD, (L -1 | O (-2, 9) 5.83 |19 | - 0503
Cc (25, 25) 600. 48 (2, 5) 1.41 (5, 24) 4.12 | 13| - 0766
#$4U (12, 12) 1685.3 (1, 1) 0 (0, 1) 9.49 [ 28| - 0355
C {25, 25) 7328.6 (3, 4) 121.49 (1, 8) 281.7 [ 21| - 0466
#5U {(12,12,12,12) |2120.0((0, 0,0, 0) 0 (12,—1,1,12) | 38.33 {52 - 0189
C{7,7,7,7) |462.77((2, 1, 1, 3) 9.7 i(9,1,1,10) | 43.17 (29| -0319
'#6U [(6,8,5,3) | 11.72 - - [(9,11,8,5) ] 11.04 |37 -0184
C |(5,4,6,2) | 13.33 - - (4,5,6,2)| 12.96 | 30| -0123
#7C l 5,5,5,5, 10) 19.73 - - (3,7,4,7,5) 11.63 [ 49| - 1653




Table5 . Optima Found by RAN for Test Problems

Prob. Xs Rs Xo Ro Xt Rf | N G
#1U (12, 12) 4.00 (16, 12) 0 (12, 12) 4.00 |15 -0000
C (25, 25) 325.25 (16, 12) 0 (2, 14) 53.00 | 14| -0598
#2U (12, 12) 69.30 (3, 2) 0 (12, 12) 69.30 | 16 [ - 0000
C |- (25, 25) 302.17 (4, 3) 3.33 (5, 2) 537 | 15| -0662
)

#3U (12, 12 132.46 |(1,1), (1, —1) 0 (—6, 44) | 10.63 | 12| -0766

C| (5 25 |600.48) (2, 5) L41| (2, 14) 10.05| 6 | -1643
#4U | (12, 12) [1685.3| (1, 1) 0 (12, 12) |1685.3 13| - 0000
C| (5 250 |7328.6| (3, 4) {12L49| (5, 2) 223.3 | 20| - 0493
#5U ((12,12,12,12) | 2120.0 {(0,0,0,0) | 0 [(12,12,12,12) | 2120. |37 | -0000
C{7,7,7,7) |462.77 (2,1, 1, 3) 9.7 [(1,7,3,1) | 2812 |22 0132
#6U [(6,8,5,3) | 1.72 - - (6,8,6,3) 11.66 |34 | -0018
Cl(5,4,6,2) 1 13.33 - - |(5,4,5,2) | 13.17 [ 28| -0057
#7C | 6,55,510 | 19.73 - - | 37376 | 12.85[48| -1433

6. Concluding Remarks

In this paper a tool, SIMICOM, for optimization of discrete variable stochastic systems which
are modeled through computer simulation has been tested and compared with two other methods.
The results from the comparison showed that the SIMICOM is a very effective tool for optimizing
simulated systems and more reliable than two other methods.
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