• Title/Summary/Keyword: Optimal sizing

Search Result 179, Processing Time 0.031 seconds

Optimal design of parallel noncontinuous units with feedstock/product storages (원료및 제품저장조를 포함하는 병렬 비연속 공정의 최적설계)

  • Yi, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.532-541
    • /
    • 1997
  • This article derives an analytic solution to determine the optimal size of multiple noncontinuous process and storage units. The total cost to be minimized consists of the setup cost of noncontinuous processing units and the inventory holding cost of feedstock/product storages. A novel approach, which is called PSW(Periodic Square Wave) model, is applied to represent the material flow among non-continuous units and storages. PSW model presumes that the material flow between unit and storage is periodic square wave shaped. The resulting optimal unit size has similar characteristics with the classical economic lot sizing model such as EOQ(Economic Order Quantity) or EPQ(Economic Production Quantity) model in a sense that the unit size is determined as the balance between setup and inventory holding cost. However, the influence of inventory holding cost of PSW model is different from that of EOQ/EPQ model. EOQ/EPQ model includes only the product inventory holding cost but PSW model includes all inventory holding costs around the non-continuous unit with proportional contribution. PSW model is suitable for analyzing interlinked process-storage system. The optimal lot size of PSW model is smaller than that of EOQ/EPQ model. This is quitea remarkable result considering that the EOQ/EPQ model has been is widely used since last half century.

  • PDF

A Hybrid Approach to Information System Sizing and Selection using Simulation and Genetic Algorithm (시뮬레이션과 유전 알고리즘의 하이브리드 기법을 이용한 정보시스템 용량 산정 및 선택 방안)

  • Min, Jae-H.;Chang, Sung-Woo;Shin, Kyung-Shik
    • Korean Management Science Review
    • /
    • v.24 no.2
    • /
    • pp.143-155
    • /
    • 2007
  • The purpose of this paper is to develop a new method for information system sizing and selection based on a hybrid mixture of simulation and genetic algorithm, and to show its cost-effectiveness by applying it to a real world problem. To serve this purpose, we propose an operational model which identifies a set of system alternatives using simulation, and determines the optimal one using genetic algorithm. Specifically, with simulation, we generate probability distributions describing real data gathered from actual system, which can overcome the major weakness of the existing methodology that normally employs point estimates of the actual data and constant correction factors without theoretical rationale. We next search for the optimal combination of H/W, the number of CPUs, and S/W, which meets both of our business goals of incurring low TCO(total cost of ownership) and maintaining a good level of transaction processing performance. Experimental result shows the proposed method in this paper saves the cost while it preserves the system's capacity within allowable performance range.

Component Sizing and Evaluating Fuel Economies of a Hybrid Electric Scooter (하이브리드 이륜차의 동력원 용량 매칭 및 연비평가)

  • Lee, Dae-In;Park, Yeong-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.98-105
    • /
    • 2012
  • Recently, most of the countries started to regulate the emission of vehicle because of the global warming. The engine scooter is also one of the factor which cause the pollution. The hybrid system of a vehicle has many advantages such as fuel saving and emission reduction. The purpose of this study is to choose optimal size of engine, motor and battery for hybrid scooter system using Dynamic programming. The dynamic programming is an effective method to find an optimal solution for the complicated nonlinear system, which contains various constraints of control variables. The power source size of hybrid scooter was chosen through the backward simulator using dynamic programming. From the analysis, we choose the optimal size of each power source. To verify the optimal size of the power source, the Forward simulation was carried out. As a result, the fuel efficiency of hybrid scooter has significantly increased in comparison with that of engine scooter.

An Optimal Procedure for Sizing and Siting of DGs and Smart Meters in Active Distribution Networks Considering Loss Reduction

  • Sattarpour, T.;Nazarpour, D.;Golshannavaz, S.;Siano, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.804-811
    • /
    • 2015
  • The presence of responsive loads in the promising active distribution networks (ADNs) would definitely affect the power system problems such as distributed generations (DGs) studies. Hence, an optimal procedure is proposed herein which takes into account the simultaneous placement of DGs and smart meters (SMs) in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Seeking to power loss minimization, the optimization procedure is tackled with genetic algorithm (GA) and tested thoroughly on 69-bus distribution test system. Different scenarios including variations in the number of DG units, adaptive power factor (APF) mode for DGs to support reactive power, and individual or simultaneous placing of DGs and SMs have been established and interrogated in depth. The obtained results certify the considerable effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the lowest value of power losses as well.

Optimal Sizing of Intercepting Flow for Reducing Pollution Loads Caused by CSOs (CSOs 저감을 위한 차집관거 최적화 시스템)

  • Kong, Min-Keun;Bae, Ki-Hyun;Kang, Woo-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.418-424
    • /
    • 2004
  • An abrupt high pollution loads in combined sewer systems is believed to be caused by first flushing actions and the resuspension of sediments deposited in sewers. Therefore, pollution loads in each flow regulator have a different tendency. This systems control intercepting flow in each flow regulator using water quality and water level. A desired quantity of intercepting flow was adjusted and the necessary slide position for a constant intercepting is calculated by Optimization programming. This systems make it possible to reduce pollution loads caused by CSOs to water body, may be alternative for the stable operation of STP through improving water quality to STP.

Fleet Sizing and Vehicle Routing for Static Freight Container Transportation (정적 환경의 화물컨테이너 운반 시스템에서의 차량 대수 및 경로 계획)

  • Koo, Pyung-Hoi;Jang, Dong-Won;Lee, Woon-Seek
    • IE interfaces
    • /
    • v.16 no.2
    • /
    • pp.174-184
    • /
    • 2003
  • This paper addresses a fleet operation planning problem for a static freight container transportation system in which all the transportation requirements are predetermined at the beginning of a planning horizon. In the transportation system under consideration, a number of loaded containers are to be moved between container storage yards. An optimal fleet planning model is used to determine the minimum number of vehicles required. Based on the results from the optimal model, a tabu-search based algorithm is presented to perform a given transportation requirements with the least number of vehicles. The performance of the new procedure is evaluated through some experiments in comparison with two existing methods, and the it is found that our procedure produces good-quality solutions.

A Daily Operation Scheduling of Total Cogeneration System Connected with Auxiliary Devices of Different Posession Right (소유권이 서로 다른 각종 보조설비가 연계된 종합 열병합발전 시스템의 일간운전계획 수립)

  • 이종범;류승헌
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.81-88
    • /
    • 1998
  • This paper describes the method decide to optimal sizing and operation scheduling of total cogeneration system which is interconnected with cogeneration unit of utility and auxiliary thermal devices of heating company. Optimal sizing and operation scheduling is established in order to minimize the fuel cost under national viewpoint. Simulations are carried out to show the reliability of method suggested by seasons and kinds. The simulated results can be effectively used as the guideline of operation scheduling between the utility and the heating company.

  • PDF

A Note on Production and Shipment Lot Sizing in a Vendor-Buyer Supply Chain with Transportation Cost (생산자-구매자 공급망에서 운송비용을 고려한 생산 및 출하량 결정)

  • Kim, Chang-Hyun;Kim, Tae-Bok
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.4
    • /
    • pp.53-61
    • /
    • 2008
  • Recently, Ertogral et al.[2] suggested two models considering the transportation cost based on single-vendor single-buyer integrated production-inventory problem. Although their problem-solving algorithm guarantees solutions obtained are optimal, a limitation is revealed that its performance can be inefficient due to complete enumeration search in a certain range. In this paper, a more efficient algorithm in finding optimal solutions is suggested for the same problem suggested by Ertogral et at.[2]. Numerical examples are presented for illustrative purpose.

A Robust Joint Optimal Pricing and Lot-Sizing Model

  • Lim, Sungmook
    • Management Science and Financial Engineering
    • /
    • v.18 no.2
    • /
    • pp.23-27
    • /
    • 2012
  • The problem of jointly determining a robust optimal bundle of price and order quantity for a retailer in a single-retailer, single supplier, single-product supply chain is considered. Demand is modeled as a decreasing power function of product price, and unit purchasing cost is modeled as a decreasing power function of order quantity and demand. Parameters defining the two power functions are uncertain but their possible values are characterized by ellipsoids. We extend a previous study in two ways; the purchasing cost function is generalized to take into account the economies of scale realized by higher product demand in addition to larger order quantity, and an exact transformation into an equivalent convex optimization program is developed instead of a geometric programming approximation scheme proposed in the previous study.

A Research on the Optimal System Sizing of the Standalone Photovoltaic Power Generation System for Uninterruptible Power Supply (독립형 태양광 발전 시스템의 무정전 전력공급을 위한 시스템 용량 최적 선정에 관한 연구)

  • Kim, Ki-Young;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.68-69
    • /
    • 2017
  • 본 논문에서는 독립형 태양광 시스템의 설계에서 배터리 용량 선정 방식에 관련하여 부하손실확률(LLP: Loss of Load Probability)이 0 인 기준을 토대로 시스템 무정전 전력공급을 위한 시행 착오법을 제안하였으며 시스템의 수명주기비용(LCC: Life Cycle Cost)을 분석하여 기존 시스템에 비해 경제성을 높이고자 한다. 제안한 방식의 검증을 위하여 시뮬레이션을 수행하였다.

  • PDF