• 제목/요약/키워드: Optimal bang-bang control

검색결과 87건 처리시간 0.021초

Lyapunov 강인 안정성 조건을 이용한 강인 최적 뱅뱅 제어기 (Robust Optimal Bang-Bang Controller Using Lyapunov Robust Stability Condition)

  • 박영진;문석준;박윤식;임채욱
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.411-418
    • /
    • 2006
  • There are mainly two types of bang-bang controllers for nominal linear time-invariant (LTI) system. Optimal bang-bang controller is designed based on optimal control theory and suboptimal bang-bang controller is obtained by using Lyapunov stability condition. In this paper, the suboptimal bang-bang control method is extended to LTI system involving both control input saturation and structured real parameter uncertainties by using Lyapunov robust stability condition. Two robust optimal bang-bang controllers are derived by minimizing the time derivative of Lyapunov function subjected to the limit of control input. The one is developed based on the classical quadratic stability(QS), and the other is developed based on the affine quadratic stability(AQS). And characteristics of the two controllers are compared. Especially, bounds of parameter uncertainties which theoretically guarantee robust stability of the two controllers are compared quantitatively for 1DOF vibrating system. Moreover, the validity of robust optimal bang-bang controller based on the AQS is shown through numerical simulations for this system.

슬라이딩 모드를 이용한 견실 최적 제어기 설계 (Design of Robust, Optimal Controller using Sliding Mode)

  • 변지영;유관호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.580-583
    • /
    • 2003
  • The general time optimal control law provides the optimal solution for a minimum time control problem. But in most real systems with disturbances and model uncertainties, the time optimal control law leads to chattering effect. This chattering effect can cause the system to be unstable. Therefore, we propose a robust optimal control algorithm for the nonlinear second order systems with model uncertainty. The proposed algorithm is combined with bang-bang control and sliding mode control. Thus the proposed algorithm has two state space regions to implement to control algorithm. In each region, the appropriate linear or nonlinear feedback control law is used satisfying the dynamic system equations. Simulation results show the superiority of the proposed controller in comparison with pure time optimal control(bang-bang control).

  • PDF

구배법 알고리즘에 의한 슬래브축열의 최적제어 해석 (An Analysis of the Optimal Control of Air-Conditioning System with Slab Thermal Storage by the Gradient Method Algorithm)

  • 정재훈
    • 설비공학논문집
    • /
    • 제20권8호
    • /
    • pp.534-540
    • /
    • 2008
  • In this paper, the optimal bang-bang control problem of an air-conditioning system with slab thermal storage was formulated by gradient method. Furthermore, the numeric solution obtained by gradient method algorithm was compared with the analytic solution obtained on the basis of maximum principle. The control variable is changed uncontinuously at the start time of thermal storage operation in an analytic solution. On the other hand, it is showed as a continuous solution in a numeric solution. The numeric solution reproduces the analytic solution when a tolerance for convergence is applied severely. It is conceivable that gradient method is effective in the analysis of the optimal bang-bang control of the large-scale system like an air-conditioning system with slab thermal storage.

최적의 Bang-Bang 입력을 이용한 볼-빔 시스템의 강인한 추적 제어 (Robust Tracking Control of a Ball and Beam System using Optimal Bang-Bang Input)

  • 이경태;최호림
    • 전기전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.110-120
    • /
    • 2018
  • 본 논문에서는, 볼-빔 시스템에 입-출력 궤환 선형화 기법을 적용하여 추종 궤적 r(t)를 추종하도록 제어기를 설계하였다. 설계한 제어기로 시뮬레이션 및 실험에 적용한 결과, 실험에서 오차가 크게 발생하였다. 이러한 이유는 외란 및 입력정합조건을 만족하지 못해 발생한 것으로 판단되어 볼-빔 시스템의 기존 모델링에서 적절한 외란을 추가하여, 시뮬레이션을 통해 실험 결과와 비슷한 유효한 모델링임을 입증하였다. 그러나, 여전히 저하된 성능으로 인해 bang-bang 제어기를 추가로 적용하였다. 결과적으로, 시스템의 불확실성에 대해 강인하고 향상된 성능을 시뮬레이션 및 실험결과를 통해 검증하였다.

OPTIMAL PARAMETERS FOR A DAMPED SINE-GORDON EQUATION

  • Ha, Jun-Hong;Gutman, Semion
    • 대한수학회지
    • /
    • 제46권5호
    • /
    • pp.1105-1117
    • /
    • 2009
  • In this paper a parameter identification problem for a damped sine-Gordon equation is studied from the theoretical and numerical perspectives. A spectral method is developed for the solution of the state and the adjoint equations. The Powell's minimization method is used for the numerical parameter identification. The necessary conditions for the optimization problem are shown to yield the bang-bang control law. Numerical results are discussed and the applicability of the necessary conditions is examined.

TIME-OPTIMAL BANG-BANG TRAJECTORIES USING BIFURCATION RESULT

  • Shin, Chang-Eon
    • 대한수학회지
    • /
    • 제34권3호
    • /
    • pp.553-567
    • /
    • 1997
  • This paper is concerned with the control problem $$ \dot{x}(t) = F(x) + u(t)G(x), t \in [0,T], x(0) = 0, $$ where F and G are smooth vector fields on $R^n$, and the admissible controls u satisfy the constraint $$\mid$u(t)$\mid$ \leq 1$. We provide the sufficient condition that the bang-bang trajectories having different switching orders intersect.

  • PDF

Bang - Bang 최적제어(最適制御)에 대한 3 점비교(点比校) 색출법(索出法)의 확장 알고리즘 (The Enlarged Sorting Algorithm of Tri - Point Comparsion Method for Bang - Bang Optimal Control)

  • 김주홍;정인국;오준남;김진원;조한준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.64-67
    • /
    • 1988
  • This paper proposes a algorithm to obtain a time-varing system parameters for the optimal controller. The proposed algorithm is enlarged from tile optimal sorting algorithm. It applies to Bang-Bang control and compares with CGD Method. We confirm that the proposed algorithm is excellent.

  • PDF

가사경수형 원자로에서의 제논 영향으로 인한 축방향 출력진동 시간최적제어 (Time-Optimal Control of Xenon-Induced Axial Power Oscillations in Pressurized Water Reactor)

  • Won-Hyo Yoon
    • 대한전기학회논문지
    • /
    • 제33권3호
    • /
    • pp.91-99
    • /
    • 1984
  • Time-optimal control for dmping a one-dimensional xenon-induced spatial power oscillations in pressurized water reactor is studied. Linearized system equations describing the spatial xenon oscillations have been derived based on lambda mode analysis. Optimal control strategies, eventually bang-bang controls, have been drawn applying Pontryagins Minimum Principle, subject to a band constraint on available contros strength. Validity of the linearized system equations and optimal control strategies derived has been demonstrated through conputer simulations which incorporate the finite difference method for one dimensional axial geometry, for the soulution of the two-group neutron diffusion equations. The results obtained through computer simulations show that xenon-induced transients can be suppressed successfully with bang-bang control.

  • PDF

슬라이딩 모드 제어를 이용한 HDD 하이브리드 제어기 설계 및 안정성 평가 (Design and Stability Test of a HDD Hybrid Controller Using Sliding-Mode Control)

  • 변지영;곽성우;유관호
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권10호
    • /
    • pp.671-677
    • /
    • 2004
  • This paper presents the design of a now controller for the read/write head of a hard disk drive. The general controller for seeking is the time-optimal control. However if we use only the time optimal control law, this could be vulnerable to chattering effect. To solve this problem, we propose a modified controller design algorithm in this paper. The proposed controller consists of bang-bang control for seeking and sliding-mode control for tracking. Moreover, to test the robustness and stability of control system, a bounded disturbance is selected to maximize a severity index. Simulation results show the superiority of the proposed controller through comparison with time optimal VSC(variable structure control).

적응최적시간제어를 사용한 전기로의 온도제어 (Temperature Control of Electric Furnaces using Adaptive Time Optimal Control)

  • 전봉근;송창섭;금영탁
    • 한국정밀공학회지
    • /
    • 제26권5호
    • /
    • pp.120-127
    • /
    • 2009
  • An electric furnace, inside which desired temperatures are kept constant by generating heat, is known to be a difficult system to control and model exactly because system parameters and response delay time vary as the temperature and position are changed. In this study the heating system of ceramic drying furnaces with time-varying parameters is mathematically modeled as a second order system and control parameters are estimated by using a RIV (Recursive Instrumental-Variable) method. A modified bang-bang control with magnitude tuning is proposed in the time optimal temperature control of ceramic drying electric furnaces and its performance is experimentally verified. It is proven that temperature tracking of adaptive time optimal control using a second order model is more stable than the GPCEW (Generalized Predictive Control with Exponential Weight) and rapidly settles down by pre-estimation of the system parameters.