• Title/Summary/Keyword: Optimal Technique

Search Result 3,174, Processing Time 0.039 seconds

Optimization of double cycling in container ports

  • Song, Jang-Ho;Kwak, Kyu-Seok
    • Journal of Navigation and Port Research
    • /
    • v.33 no.2
    • /
    • pp.127-134
    • /
    • 2009
  • If the research on double cycle is revitalized, crane productivity will be rapidly improved bemuse double cycle is an operational technique that can maximize equipments efficiency (Quay crane, RMG/RTG, Yard tractor). Unfortunately, it is very difficult for terminal operators to find out the starting point of double cycle bemuse the loading & unloading pattern and conditions are various. Therefore, terminal operators are apt to fail to find out the optimal starting point of double cycle to maximize its frequency. Experiencing the same mistakes in the process we made efforts to find out the optimal starting point, finally we found out the formula for it. And we verified its precision is perfect through a lot of testing. This paper on double cycling focused on making the formula to find out optimal starting point of double cycle to maximize its frequency. And it can be applied to various ships' stowages in common.

Implementation of Optimal Train control algorithm using Simulated Anealir (시뮬레이티드 어닐링(SA)을 이용한 열차최적제어 알고리즘의 구현)

  • Han, Seong-Ho;Baek, Jong-Hyen;Lee, Su-Gil;Byen, Yun-Sub;An, Tae-Ki;Ohn, Jeung-Geun;Park, Hyun-Jun;Jeon, Young-Jae;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.486-488
    • /
    • 1999
  • This paper shows the form of the optimal solution and how to minimize energy of train driving control using SA(simulated annealing). In this paper, we consider the case where a train is to be driven by automatic operation mode along a non-constant gradient, curve and with speed limits. Using the combinational optimal technique, SA, we constructed optimal train driving strategy.

  • PDF

Near-Optimal Parameters of Three Span Continuous Beams subjected to a Moving Load (이동하중이 작용하는 3경간 연속보의 근사 최적제원)

  • 이병규;오상진;모정만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.139-146
    • /
    • 1997
  • The main purpose of this paper is to investigate the near-optimal parameters of continuous beam subject to a moving load. The computer-aided optimization technique is used to obtain the near-optimal parameters. The computer program is developed to obtain the natural frequency parameters and the forced vibration responses to a transit point load for the continuous beam with variable support spacing, mass and stiffness. The optimization function to describe the design efficiency is defined as a linear combination of four dimensionless span characteristics: the maximum dynamic stress; the stress difference between span segments; the rms deflection under the transit point load; and the total span mass. Studies of three span beams show that the beam with near-optimal parameters can improve design efficiency by 12 to 24 percent when compared to a reference configuration beams of the same total span length.

  • PDF

Optimal design of composite laminates for minimizing delamination stresses by particle swarm optimization combined with FEM

  • Chen, Jianqiao;Peng, Wenjie;Ge, Rui;Wei, Junhong
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.407-421
    • /
    • 2009
  • The present paper addresses the optimal design of composite laminates with the aim of minimizing free-edge delamination stresses. A technique involving the application of particle swarm optimization (PSO) integrated with FEM was developed for the optimization. Optimization was also conducted with the zero-order method (ZOM) included in ANSYS. The semi-analytical method, which provides an approximation of the interlaminar normal stress of laminates under in-plane load, was used to partially validate the optimization results. It was found that optimal results based on ZOM are sensitive to the starting design points, and an unsuitable initial design set will lead to a result far from global solution. By contrast, the proposed method can find the global optimal solution regardless of initial designs, and the solutions were better than those obtained by ZOM in all the cases investigated.

Optimal Conjunctive Use of Surface and Ground Water (지표수와 지하수의 최적 연계운영)

  • Yi, Jae-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.367-374
    • /
    • 2002
  • Water supply plan by optimal conjunctive use of surface and ground water is studied to prepare expected water deficit in near future. The optimization model for conjunctive use of surface and ground water is developed using discrete differential dynamic programming technique to maximize net benefit by water supply. As a result of applying the model to Namdaechun river located in Yangyang, it is found that water supply reliability using optimal conjunctive use of surface and ground water is much higher than reliability using surface water alone.

A Study on Optimization of Block Sectioning for Step Speed Control (I) (다단계 속도제어를 위한 폐색구간 분할에 대한 최적화에 관한 연구 (I))

  • 이종우
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.390-396
    • /
    • 2003
  • This paper is focused on an optimal block sectioning technique which are widely used in conventional railway system. We studied braking distance with pure train braking performance to generalize train braking. We tried to apply the braking distance to wayside signaling system to decide optimal block sectioning to reduce headway. The braking distances are obtained for 2 aspects, 3 aspects, 4 aspects and n aspects such that step speed control, are longer than the pure braking distance. We found an optimal solution with the generalized n aspects, and a minimum block distance for ATO mode.

Optimal Placement Design of Phase-Shifting Transformers for Power System Congestion Problems (계통 혼잡처리를 위한 Phase-Shifting Transformers의 최적 위치 선정)

  • Kim Kyu-Ho;Song Kyung-Bin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.12
    • /
    • pp.567-572
    • /
    • 2005
  • This paper presents a scheme to design optimal placement of phase-shifting transformers for power system congestion problems. A good design of phase-shifting transformers placement can improve total transfer capability in interconnected systems. In order to find the optimal placement of phase-shifting transformers, the power flows of the interesting transmission lines are evaluated using sequential quadratic programming technique. This algorithm considers power balance equations and security constraints such as voltage magnitudes and transmission line capacities. The proposed scheme is tested in 10 machines 39 buses and IEEE 57 buses systems. Test result shows that the proposed method can find the optimal placement of phase-shifting transformers to solver power system congestion problems.

Optimal Control of Distributed Parameter Systems Via Fast WALSH Transform (고속 WALSH 변환에 의한 분포정수계의 최적제어)

  • Kim, Tai-Hoon;Kim, Jin-Tae;Lee, Seung;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.10
    • /
    • pp.464-472
    • /
    • 2001
  • This study uses distributed parameter systems as the spatial discretization technique, modelling in lumped parameter systems, and applies fast WALSH transform and the Picard's iteration method to high order partial differential equations and matrix partial differential equations. This thesis presents a new algorithm which usefully exercises the optimal control in the distributed parameter systems. In exercising optimal control of distributed parameter systems, excellent consequences are found without using the existing decentralized control or hierarchical control method. This study will help apply to linear time-varying systems and non-linear systems. Further research on algorithm will be required to solve the problems of convergence in case of numerous applicable intervals.

  • PDF

Load Frequency Control Charateristic of 2-Area Power Systems by Optimal PID Controller (최적PID 제어기에 의한 2지역 전력계통 부하주파수 제어특성에 관한 연구)

  • 정형환;이준탁;안병철;김용필;김해재
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.703-710
    • /
    • 1994
  • This paper describes for the applicability of optimal PID controller to the load frequency control of 2-area power systems. The proposed optimal PID controllers are designed by the optimization technique of P.I.D's gain coefficients using the relatively ingeneous simplex method, and we have considered the system sensitivity for the optimal gains and the stable effects of systems to speed regulation changes. This PID controller for load frequency control systems with exciter shows better performances and robustness than conventional tie-line bias controller.

  • PDF

Development of Pareto-Optimal Technique for Generation Planning According to Environmental Characteristics in Term (환경특성을 고려한 다목적함수의 기간 발전계획 Pareto 최적화)

  • Lee, Buhm;Kim, Y.H.;Choi, S.K.;Cho, S.L.;Na, I.G.;Hwang, B.S.;Kim, Dong-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.233-235
    • /
    • 2003
  • This paper describes a new methodology to get pareto-optimal generation planning for decision-making. To get optimal generation planning consider total quantity of contamination for the specified term, authors employ dynamic programming. And, in the course of dynamic programming, pareto optimal solution can be obtained. So, a most proper solution can be selected by derision-maker. The usefulness is verified by applying It to the test system.

  • PDF